2025-01-25 00:11:00 +01:00
|
|
|
import os
|
2025-01-25 00:55:07 +01:00
|
|
|
import pipmaster as pm # Pipmaster for dynamic library install
|
2025-01-25 00:11:00 +01:00
|
|
|
|
|
|
|
# install specific modules
|
|
|
|
if not pm.is_installed("openai"):
|
|
|
|
pm.install("openai")
|
|
|
|
|
|
|
|
from openai import (
|
|
|
|
AsyncAzureOpenAI,
|
|
|
|
APIConnectionError,
|
|
|
|
RateLimitError,
|
|
|
|
APITimeoutError,
|
|
|
|
)
|
|
|
|
from tenacity import (
|
|
|
|
retry,
|
|
|
|
stop_after_attempt,
|
|
|
|
wait_exponential,
|
|
|
|
retry_if_exception_type,
|
|
|
|
)
|
|
|
|
|
|
|
|
from lightrag.utils import (
|
|
|
|
wrap_embedding_func_with_attrs,
|
|
|
|
locate_json_string_body_from_string,
|
|
|
|
safe_unicode_decode,
|
|
|
|
)
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
2025-01-25 00:55:07 +01:00
|
|
|
|
2025-01-25 00:11:00 +01:00
|
|
|
@retry(
|
|
|
|
stop=stop_after_attempt(3),
|
|
|
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
|
|
retry=retry_if_exception_type(
|
|
|
|
(RateLimitError, APIConnectionError, APIConnectionError)
|
|
|
|
),
|
|
|
|
)
|
|
|
|
async def azure_openai_complete_if_cache(
|
|
|
|
model,
|
|
|
|
prompt,
|
|
|
|
system_prompt=None,
|
|
|
|
history_messages=[],
|
|
|
|
base_url=None,
|
|
|
|
api_key=None,
|
|
|
|
api_version=None,
|
|
|
|
**kwargs,
|
|
|
|
):
|
|
|
|
if api_key:
|
|
|
|
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
|
|
|
if base_url:
|
|
|
|
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
|
|
|
if api_version:
|
|
|
|
os.environ["AZURE_OPENAI_API_VERSION"] = api_version
|
|
|
|
|
|
|
|
openai_async_client = AsyncAzureOpenAI(
|
|
|
|
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
2025-03-11 11:57:41 +08:00
|
|
|
azure_deployment=model,
|
2025-01-25 00:11:00 +01:00
|
|
|
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
|
|
|
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
|
|
|
)
|
|
|
|
kwargs.pop("hashing_kv", None)
|
|
|
|
messages = []
|
|
|
|
if system_prompt:
|
|
|
|
messages.append({"role": "system", "content": system_prompt})
|
|
|
|
messages.extend(history_messages)
|
|
|
|
if prompt is not None:
|
|
|
|
messages.append({"role": "user", "content": prompt})
|
|
|
|
|
|
|
|
if "response_format" in kwargs:
|
|
|
|
response = await openai_async_client.beta.chat.completions.parse(
|
|
|
|
model=model, messages=messages, **kwargs
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
response = await openai_async_client.chat.completions.create(
|
|
|
|
model=model, messages=messages, **kwargs
|
|
|
|
)
|
|
|
|
|
|
|
|
if hasattr(response, "__aiter__"):
|
|
|
|
|
|
|
|
async def inner():
|
|
|
|
async for chunk in response:
|
|
|
|
if len(chunk.choices) == 0:
|
|
|
|
continue
|
|
|
|
content = chunk.choices[0].delta.content
|
|
|
|
if content is None:
|
|
|
|
continue
|
|
|
|
if r"\u" in content:
|
|
|
|
content = safe_unicode_decode(content.encode("utf-8"))
|
|
|
|
yield content
|
|
|
|
|
|
|
|
return inner()
|
|
|
|
else:
|
|
|
|
content = response.choices[0].message.content
|
|
|
|
if r"\u" in content:
|
|
|
|
content = safe_unicode_decode(content.encode("utf-8"))
|
|
|
|
return content
|
|
|
|
|
|
|
|
|
|
|
|
async def azure_openai_complete(
|
|
|
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
|
|
|
) -> str:
|
|
|
|
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
|
|
|
result = await azure_openai_complete_if_cache(
|
|
|
|
os.getenv("LLM_MODEL", "gpt-4o-mini"),
|
|
|
|
prompt,
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
history_messages=history_messages,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
if keyword_extraction: # TODO: use JSON API
|
|
|
|
return locate_json_string_body_from_string(result)
|
|
|
|
return result
|
|
|
|
|
2025-01-25 00:55:07 +01:00
|
|
|
|
2025-01-25 00:11:00 +01:00
|
|
|
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8191)
|
|
|
|
@retry(
|
|
|
|
stop=stop_after_attempt(3),
|
|
|
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
|
|
retry=retry_if_exception_type(
|
|
|
|
(RateLimitError, APIConnectionError, APITimeoutError)
|
|
|
|
),
|
|
|
|
)
|
|
|
|
async def azure_openai_embed(
|
|
|
|
texts: list[str],
|
2025-02-17 12:43:51 +05:30
|
|
|
model: str = os.getenv("EMBEDDING_MODEL", "text-embedding-3-small"),
|
2025-01-25 00:11:00 +01:00
|
|
|
base_url: str = None,
|
|
|
|
api_key: str = None,
|
|
|
|
api_version: str = None,
|
|
|
|
) -> np.ndarray:
|
|
|
|
if api_key:
|
|
|
|
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
|
|
|
if base_url:
|
|
|
|
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
|
|
|
if api_version:
|
|
|
|
os.environ["AZURE_OPENAI_API_VERSION"] = api_version
|
|
|
|
|
|
|
|
openai_async_client = AsyncAzureOpenAI(
|
|
|
|
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
2025-03-11 11:57:41 +08:00
|
|
|
azure_deployment=model,
|
2025-01-25 00:11:00 +01:00
|
|
|
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
|
|
|
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
|
|
|
)
|
|
|
|
|
|
|
|
response = await openai_async_client.embeddings.create(
|
|
|
|
model=model, input=texts, encoding_format="float"
|
|
|
|
)
|
|
|
|
return np.array([dp.embedding for dp in response.data])
|