435 lines
14 KiB
Python
Raw Normal View History

2024-10-10 15:02:30 +08:00
import os
import copy
import json
import aioboto3
2024-10-10 15:02:30 +08:00
import numpy as np
2024-10-16 15:15:10 +08:00
import ollama
2024-10-10 15:02:30 +08:00
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
from tenacity import (
retry,
stop_after_attempt,
wait_exponential,
retry_if_exception_type,
)
from transformers import AutoTokenizer, AutoModelForCausalLM
2024-10-14 19:41:07 +08:00
import torch
2024-10-10 15:02:30 +08:00
from .base import BaseKVStorage
from .utils import compute_args_hash, wrap_embedding_func_with_attrs
2024-10-14 19:41:07 +08:00
os.environ["TOKENIZERS_PARALLELISM"] = "false"
2024-10-10 15:02:30 +08:00
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
)
async def openai_complete_if_cache(
model,
prompt,
system_prompt=None,
history_messages=[],
base_url=None,
api_key=None,
**kwargs,
2024-10-10 15:02:30 +08:00
) -> str:
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
openai_async_client = (
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
)
2024-10-10 15:02:30 +08:00
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
response = await openai_async_client.chat.completions.create(
model=model, messages=messages, **kwargs
)
if hashing_kv is not None:
await hashing_kv.upsert(
{args_hash: {"return": response.choices[0].message.content, "model": model}}
)
return response.choices[0].message.content
class BedrockError(Exception):
"""Generic error for issues related to Amazon Bedrock"""
@retry(
stop=stop_after_attempt(5),
wait=wait_exponential(multiplier=1, max=60),
retry=retry_if_exception_type((BedrockError)),
)
async def bedrock_complete_if_cache(
model,
prompt,
system_prompt=None,
history_messages=[],
aws_access_key_id=None,
aws_secret_access_key=None,
aws_session_token=None,
**kwargs,
) -> str:
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
"AWS_ACCESS_KEY_ID", aws_access_key_id
)
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
)
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
"AWS_SESSION_TOKEN", aws_session_token
)
# Fix message history format
messages = []
for history_message in history_messages:
message = copy.copy(history_message)
message["content"] = [{"text": message["content"]}]
messages.append(message)
# Add user prompt
messages.append({"role": "user", "content": [{"text": prompt}]})
# Initialize Converse API arguments
args = {"modelId": model, "messages": messages}
# Define system prompt
if system_prompt:
args["system"] = [{"text": system_prompt}]
# Map and set up inference parameters
inference_params_map = {
"max_tokens": "maxTokens",
"top_p": "topP",
"stop_sequences": "stopSequences",
}
if inference_params := list(
set(kwargs) & set(["max_tokens", "temperature", "top_p", "stop_sequences"])
):
args["inferenceConfig"] = {}
for param in inference_params:
args["inferenceConfig"][inference_params_map.get(param, param)] = (
kwargs.pop(param)
)
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
# Call model via Converse API
session = aioboto3.Session()
async with session.client("bedrock-runtime") as bedrock_async_client:
try:
response = await bedrock_async_client.converse(**args, **kwargs)
except Exception as e:
raise BedrockError(e)
if hashing_kv is not None:
await hashing_kv.upsert(
{
args_hash: {
"return": response["output"]["message"]["content"][0]["text"],
"model": model,
}
}
)
return response["output"]["message"]["content"][0]["text"]
2024-10-14 19:41:07 +08:00
async def hf_model_if_cache(
model, prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
model_name = model
hf_tokenizer = AutoTokenizer.from_pretrained(model_name, device_map="auto")
if hf_tokenizer.pad_token is None:
2024-10-14 19:41:07 +08:00
# print("use eos token")
hf_tokenizer.pad_token = hf_tokenizer.eos_token
hf_model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
2024-10-14 19:41:07 +08:00
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
input_prompt = ""
2024-10-14 19:41:07 +08:00
try:
input_prompt = hf_tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
except Exception:
2024-10-14 19:41:07 +08:00
try:
ori_message = copy.deepcopy(messages)
if messages[0]["role"] == "system":
messages[1]["content"] = (
"<system>"
+ messages[0]["content"]
+ "</system>\n"
+ messages[1]["content"]
)
2024-10-14 19:41:07 +08:00
messages = messages[1:]
input_prompt = hf_tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
except Exception:
2024-10-14 19:41:07 +08:00
len_message = len(ori_message)
for msgid in range(len_message):
input_prompt = (
input_prompt
+ "<"
+ ori_message[msgid]["role"]
+ ">"
+ ori_message[msgid]["content"]
+ "</"
+ ori_message[msgid]["role"]
+ ">\n"
)
input_ids = hf_tokenizer(
input_prompt, return_tensors="pt", padding=True, truncation=True
).to("cuda")
output = hf_model.generate(
**input_ids, max_new_tokens=200, num_return_sequences=1, early_stopping=True
)
2024-10-14 19:41:07 +08:00
response_text = hf_tokenizer.decode(output[0], skip_special_tokens=True)
if hashing_kv is not None:
await hashing_kv.upsert({args_hash: {"return": response_text, "model": model}})
2024-10-14 19:41:07 +08:00
return response_text
2024-10-16 15:15:10 +08:00
async def ollama_model_if_cache(
model, prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
kwargs.pop("max_tokens", None)
kwargs.pop("response_format", None)
ollama_client = ollama.AsyncClient()
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
result = response["message"]["content"]
if hashing_kv is not None:
await hashing_kv.upsert({args_hash: {"return": result, "model": model}})
return result
2024-10-14 19:41:07 +08:00
2024-10-10 15:02:30 +08:00
async def gpt_4o_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"gpt-4o",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
async def gpt_4o_mini_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"gpt-4o-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
async def bedrock_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await bedrock_complete_if_cache(
"anthropic.claude-3-haiku-20240307-v1:0",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
2024-10-14 20:33:46 +08:00
async def hf_model_complete(
2024-10-14 19:41:07 +08:00
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
2024-10-14 19:41:07 +08:00
return await hf_model_if_cache(
2024-10-15 20:06:59 +08:00
model_name,
2024-10-14 19:41:07 +08:00
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
2024-10-16 15:15:10 +08:00
async def ollama_model_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
2024-10-16 15:15:10 +08:00
return await ollama_model_if_cache(
model_name,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
2024-10-10 15:02:30 +08:00
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
)
async def openai_embedding(
texts: list[str],
model: str = "text-embedding-3-small",
base_url: str = None,
api_key: str = None,
) -> np.ndarray:
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
openai_async_client = (
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
)
2024-10-10 15:02:30 +08:00
response = await openai_async_client.embeddings.create(
model=model, input=texts, encoding_format="float"
2024-10-10 15:02:30 +08:00
)
return np.array([dp.embedding for dp in response.data])
2024-10-14 19:41:07 +08:00
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
# @retry(
# stop=stop_after_attempt(3),
# wait=wait_exponential(multiplier=1, min=4, max=10),
# retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions
# )
async def bedrock_embedding(
texts: list[str],
model: str = "amazon.titan-embed-text-v2:0",
aws_access_key_id=None,
aws_secret_access_key=None,
aws_session_token=None,
) -> np.ndarray:
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
"AWS_ACCESS_KEY_ID", aws_access_key_id
)
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
)
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
"AWS_SESSION_TOKEN", aws_session_token
)
session = aioboto3.Session()
async with session.client("bedrock-runtime") as bedrock_async_client:
if (model_provider := model.split(".")[0]) == "amazon":
embed_texts = []
for text in texts:
if "v2" in model:
body = json.dumps(
{
"inputText": text,
# 'dimensions': embedding_dim,
"embeddingTypes": ["float"],
}
)
elif "v1" in model:
body = json.dumps({"inputText": text})
else:
raise ValueError(f"Model {model} is not supported!")
response = await bedrock_async_client.invoke_model(
modelId=model,
body=body,
accept="application/json",
contentType="application/json",
)
response_body = await response.get("body").json()
embed_texts.append(response_body["embedding"])
elif model_provider == "cohere":
body = json.dumps(
{"texts": texts, "input_type": "search_document", "truncate": "NONE"}
)
response = await bedrock_async_client.invoke_model(
model=model,
body=body,
accept="application/json",
contentType="application/json",
)
response_body = json.loads(response.get("body").read())
embed_texts = response_body["embeddings"]
else:
raise ValueError(f"Model provider '{model_provider}' is not supported!")
return np.array(embed_texts)
2024-10-15 19:40:08 +08:00
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
input_ids = tokenizer(
texts, return_tensors="pt", padding=True, truncation=True
).input_ids
2024-10-14 19:41:07 +08:00
with torch.no_grad():
2024-10-15 19:40:08 +08:00
outputs = embed_model(input_ids)
2024-10-14 19:41:07 +08:00
embeddings = outputs.last_hidden_state.mean(dim=1)
return embeddings.detach().numpy()
2024-10-16 15:15:10 +08:00
async def ollama_embedding(texts: list[str], embed_model) -> np.ndarray:
embed_text = []
for text in texts:
data = ollama.embeddings(model=embed_model, prompt=text)
embed_text.append(data["embedding"])
return embed_text
2024-10-14 19:41:07 +08:00
2024-10-10 15:02:30 +08:00
if __name__ == "__main__":
import asyncio
async def main():
result = await gpt_4o_mini_complete("How are you?")
2024-10-10 15:02:30 +08:00
print(result)
asyncio.run(main())