LightRAG/lightrag/kg/mongo_impl.py

933 lines
35 KiB
Python
Raw Normal View History

2024-12-05 13:57:43 +08:00
import os
from dataclasses import dataclass
2025-02-05 02:48:12 +08:00
import numpy as np
import configparser
2025-02-09 19:51:05 +01:00
from tqdm.asyncio import tqdm as tqdm_async
import asyncio
2025-01-27 23:21:34 +08:00
from typing import Any, List, Union, final
2024-12-05 13:57:43 +08:00
from ..base import (
BaseGraphStorage,
BaseKVStorage,
BaseVectorStorage,
DocProcessingStatus,
DocStatus,
DocStatusStorage,
)
2025-02-08 16:05:59 +08:00
from ..namespace import NameSpace, is_namespace
2025-02-09 19:51:05 +01:00
from ..utils import logger
from ..types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
2025-02-16 15:08:50 +01:00
import pipmaster as pm
if not pm.is_installed("pymongo"):
pm.install("pymongo")
if not pm.is_installed("motor"):
pm.install("motor")
2024-12-05 13:57:43 +08:00
try:
from motor.motor_asyncio import AsyncIOMotorClient, AsyncIOMotorDatabase
from pymongo.operations import SearchIndexModel
from pymongo.errors import PyMongoError
except ImportError as e:
raise ImportError(
2025-02-16 14:45:45 +01:00
"`motor, pymongo` library is not installed. Please install it via pip: `pip install motor pymongo`."
) from e
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
2025-02-11 03:29:40 +08:00
class ClientManager:
_instances = {"db": None, "ref_count": 0}
_lock = asyncio.Lock()
@classmethod
async def get_client(cls) -> AsyncIOMotorDatabase:
async with cls._lock:
if cls._instances["db"] is None:
uri = os.environ.get(
"MONGO_URI",
config.get(
"mongodb",
"uri",
fallback="mongodb://root:root@localhost:27017/",
),
)
database_name = os.environ.get(
"MONGO_DATABASE",
config.get("mongodb", "database", fallback="LightRAG"),
)
client = AsyncIOMotorClient(uri)
db = client.get_database(database_name)
cls._instances["db"] = db
cls._instances["ref_count"] = 0
cls._instances["ref_count"] += 1
return cls._instances["db"]
@classmethod
async def release_client(cls, db: AsyncIOMotorDatabase):
async with cls._lock:
if db is not None:
if db is cls._instances["db"]:
cls._instances["ref_count"] -= 1
if cls._instances["ref_count"] == 0:
cls._instances["db"] = None
@final
2024-12-05 13:57:43 +08:00
@dataclass
class MongoKVStorage(BaseKVStorage):
def __post_init__(self):
self._collection_name = self.namespace
async def initialize(self):
if not hasattr(self, "db") or self.db is None:
self.db = await ClientManager.get_client()
self._data = await get_or_create_collection(self.db, self._collection_name)
logger.debug(f"Use MongoDB as KV {self._collection_name}")
async def finalize(self):
if hasattr(self, "db") and self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
2024-12-05 13:57:43 +08:00
async def get_by_id(self, id: str) -> dict[str, Any] | None:
return await self._data.find_one({"_id": id})
2024-12-05 13:57:43 +08:00
2025-02-09 10:33:15 +01:00
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
cursor = self._data.find({"_id": {"$in": ids}})
return await cursor.to_list()
2024-12-05 13:57:43 +08:00
async def filter_keys(self, keys: set[str]) -> set[str]:
2025-02-16 13:55:30 +01:00
cursor = self._data.find({"_id": {"$in": list(keys)}}, {"_id": 1})
existing_ids = {str(x["_id"]) async for x in cursor}
2025-02-16 13:55:30 +01:00
return keys - existing_ids
2024-12-05 13:57:43 +08:00
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
2025-02-08 16:05:59 +08:00
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
update_tasks = []
for mode, items in data.items():
for k, v in items.items():
key = f"{mode}_{k}"
data[mode][k]["_id"] = f"{mode}_{k}"
update_tasks.append(
self._data.update_one(
{"_id": key}, {"$setOnInsert": v}, upsert=True
)
)
await asyncio.gather(*update_tasks)
else:
update_tasks = []
for k, v in data.items():
data[k]["_id"] = k
update_tasks.append(
self._data.update_one({"_id": k}, {"$set": v}, upsert=True)
)
await asyncio.gather(*update_tasks)
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
2025-02-08 16:05:59 +08:00
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
res = {}
v = await self._data.find_one({"_id": mode + "_" + id})
if v:
res[id] = v
logger.debug(f"llm_response_cache find one by:{id}")
return res
else:
return None
else:
return None
async def index_done_callback(self) -> None:
2025-02-16 16:04:07 +01:00
# Mongo handles persistence automatically
pass
2025-02-16 13:55:30 +01:00
2025-02-18 10:21:54 +01:00
@final
@dataclass
class MongoDocStatusStorage(DocStatusStorage):
def __post_init__(self):
self._collection_name = self.namespace
async def initialize(self):
if not hasattr(self, "db") or self.db is None:
self.db = await ClientManager.get_client()
self._data = await get_or_create_collection(self.db, self._collection_name)
logger.debug(f"Use MongoDB as DocStatus {self._collection_name}")
async def finalize(self):
if hasattr(self, "db") and self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
return await self._data.find_one({"_id": id})
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
cursor = self._data.find({"_id": {"$in": ids}})
return await cursor.to_list()
async def filter_keys(self, data: set[str]) -> set[str]:
cursor = self._data.find({"_id": {"$in": list(data)}}, {"_id": 1})
existing_ids = {str(x["_id"]) async for x in cursor}
return data - existing_ids
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
update_tasks = []
for k, v in data.items():
data[k]["_id"] = k
update_tasks.append(
self._data.update_one({"_id": k}, {"$set": v}, upsert=True)
)
await asyncio.gather(*update_tasks)
async def get_status_counts(self) -> dict[str, int]:
"""Get counts of documents in each status"""
pipeline = [{"$group": {"_id": "$status", "count": {"$sum": 1}}}]
cursor = self._data.aggregate(pipeline)
result = await cursor.to_list()
counts = {}
for doc in result:
counts[doc["_id"]] = doc["count"]
return counts
async def get_docs_by_status(
self, status: DocStatus
) -> dict[str, DocProcessingStatus]:
"""Get all documents with a specific status"""
cursor = self._data.find({"status": status.value})
result = await cursor.to_list()
return {
doc["_id"]: DocProcessingStatus(
content=doc["content"],
content_summary=doc.get("content_summary"),
content_length=doc["content_length"],
status=doc["status"],
created_at=doc.get("created_at"),
updated_at=doc.get("updated_at"),
chunks_count=doc.get("chunks_count", -1),
)
for doc in result
}
async def index_done_callback(self) -> None:
2025-02-16 16:04:07 +01:00
# Mongo handles persistence automatically
pass
2025-02-18 10:21:54 +01:00
@final
2025-01-29 07:31:34 -05:00
@dataclass
class MongoGraphStorage(BaseGraphStorage):
"""
A concrete implementation using MongoDBs $graphLookup to demonstrate multi-hop queries.
"""
def __init__(self, namespace, global_config, embedding_func):
super().__init__(
namespace=namespace,
global_config=global_config,
embedding_func=embedding_func,
)
self._collection_name = self.namespace
async def initialize(self):
if not hasattr(self, "db") or self.db is None:
self.db = await ClientManager.get_client()
self.collection = await get_or_create_collection(
self.db, self._collection_name
)
logger.debug(f"Use MongoDB as KG {self._collection_name}")
async def finalize(self):
if hasattr(self, "db") and self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
2025-01-29 07:31:34 -05:00
#
# -------------------------------------------------------------------------
# HELPER: $graphLookup pipeline
# -------------------------------------------------------------------------
#
async def _graph_lookup(
self, start_node_id: str, max_depth: int = None
) -> List[dict]:
"""
Performs a $graphLookup starting from 'start_node_id' and returns
all reachable documents (including the start node itself).
Pipeline Explanation:
- 1) $match: We match the start node document by _id = start_node_id.
- 2) $graphLookup:
"from": same collection,
"startWith": "$edges.target" (the immediate neighbors in 'edges'),
"connectFromField": "edges.target",
"connectToField": "_id",
"as": "reachableNodes",
"maxDepth": max_depth (if provided),
"depthField": "depth" (used for debugging or filtering).
- 3) We add an $project or $unwind as needed to extract data.
"""
pipeline = [
{"$match": {"_id": start_node_id}},
{
"$graphLookup": {
"from": self.collection.name,
"startWith": "$edges.target",
"connectFromField": "edges.target",
"connectToField": "_id",
"as": "reachableNodes",
"depthField": "depth",
}
},
]
# If you want a limited depth (e.g., only 1 or 2 hops), set maxDepth
if max_depth is not None:
pipeline[1]["$graphLookup"]["maxDepth"] = max_depth
# Return the matching doc plus a field "reachableNodes"
cursor = self.collection.aggregate(pipeline)
results = await cursor.to_list(None)
# If there's no matching node, results = [].
# Otherwise, results[0] is the start node doc,
# plus results[0]["reachableNodes"] is the array of connected docs.
return results
#
# -------------------------------------------------------------------------
# BASIC QUERIES
# -------------------------------------------------------------------------
#
async def has_node(self, node_id: str) -> bool:
"""
Check if node_id is present in the collection by looking up its doc.
No real need for $graphLookup here, but let's keep it direct.
"""
doc = await self.collection.find_one({"_id": node_id}, {"_id": 1})
return doc is not None
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
"""
Check if there's a direct single-hop edge from source_node_id to target_node_id.
We'll do a $graphLookup with maxDepth=0 from the source node—meaning
Look up zero expansions. Actually, for a direct edge check, we can do maxDepth=1
and then see if the target node is in the "reachableNodes" at depth=0.
But typically for a direct edge, we might just do a find_one.
Below is a demonstration approach.
"""
# We can do a single-hop graphLookup (maxDepth=0 or 1).
# Then check if the target_node appears among the edges array.
pipeline = [
{"$match": {"_id": source_node_id}},
{
"$graphLookup": {
"from": self.collection.name,
"startWith": "$edges.target",
"connectFromField": "edges.target",
"connectToField": "_id",
"as": "reachableNodes",
"depthField": "depth",
"maxDepth": 0, # means: do not follow beyond immediate edges
}
},
{
"$project": {
"_id": 0,
"reachableNodes._id": 1, # only keep the _id from the subdocs
}
},
]
cursor = self.collection.aggregate(pipeline)
results = await cursor.to_list(None)
if not results:
return False
# results[0]["reachableNodes"] are the immediate neighbors
reachable_ids = [d["_id"] for d in results[0].get("reachableNodes", [])]
return target_node_id in reachable_ids
#
# -------------------------------------------------------------------------
# DEGREES
# -------------------------------------------------------------------------
#
async def node_degree(self, node_id: str) -> int:
"""
Returns the total number of edges connected to node_id (both inbound and outbound).
The easiest approach is typically two queries:
- count of edges array in node_id's doc
- count of how many other docs have node_id in their edges.target.
But we'll do a $graphLookup demonstration for inbound edges:
1) Outbound edges: direct from node's edges array
2) Inbound edges: we can do a special $graphLookup from all docs
or do an explicit match.
For demonstration, let's do this in two steps (with second step $graphLookup).
"""
# --- 1) Outbound edges (direct from doc) ---
doc = await self.collection.find_one({"_id": node_id}, {"edges": 1})
if not doc:
return 0
outbound_count = len(doc.get("edges", []))
# --- 2) Inbound edges:
# A simple way is: find all docs where "edges.target" == node_id.
# But let's do a $graphLookup from `node_id` in REVERSE.
# There's a trick to do "reverse" graphLookups: you'd store
# reversed edges or do a more advanced pipeline. Typically you'd do
# a direct match. We'll just do a direct match for inbound.
inbound_count_pipeline = [
{"$match": {"edges.target": node_id}},
{
"$project": {
"matchingEdgesCount": {
"$size": {
"$filter": {
"input": "$edges",
"as": "edge",
"cond": {"$eq": ["$$edge.target", node_id]},
}
}
}
}
},
{"$group": {"_id": None, "totalInbound": {"$sum": "$matchingEdgesCount"}}},
]
inbound_cursor = self.collection.aggregate(inbound_count_pipeline)
inbound_result = await inbound_cursor.to_list(None)
inbound_count = inbound_result[0]["totalInbound"] if inbound_result else 0
return outbound_count + inbound_count
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
"""
If your graph can hold multiple edges from the same src to the same tgt
(e.g. different 'relation' values), you can sum them. If it's always
one edge, this is typically 1 or 0.
We'll do a single-hop $graphLookup from src_id,
then count how many edges reference tgt_id at depth=0.
"""
pipeline = [
{"$match": {"_id": src_id}},
{
"$graphLookup": {
"from": self.collection.name,
"startWith": "$edges.target",
"connectFromField": "edges.target",
"connectToField": "_id",
"as": "neighbors",
"depthField": "depth",
"maxDepth": 0,
}
},
{"$project": {"edges": 1, "neighbors._id": 1, "neighbors.type": 1}},
]
cursor = self.collection.aggregate(pipeline)
results = await cursor.to_list(None)
if not results:
return 0
# We can simply count how many edges in `results[0].edges` have target == tgt_id.
edges = results[0].get("edges", [])
count = sum(1 for e in edges if e.get("target") == tgt_id)
return count
#
# -------------------------------------------------------------------------
# GETTERS
# -------------------------------------------------------------------------
#
async def get_node(self, node_id: str) -> dict[str, str] | None:
2025-01-29 07:31:34 -05:00
"""
Return the full node document (including "edges"), or None if missing.
"""
return await self.collection.find_one({"_id": node_id})
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> dict[str, str] | None:
2025-01-29 07:31:34 -05:00
pipeline = [
{"$match": {"_id": source_node_id}},
{
"$graphLookup": {
"from": self.collection.name,
"startWith": "$edges.target",
"connectFromField": "edges.target",
"connectToField": "_id",
"as": "neighbors",
"depthField": "depth",
"maxDepth": 0,
}
},
{"$project": {"edges": 1}},
]
cursor = self.collection.aggregate(pipeline)
docs = await cursor.to_list(None)
if not docs:
return None
for e in docs[0].get("edges", []):
if e.get("target") == target_node_id:
return e
return None
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
2025-01-29 07:31:34 -05:00
"""
Return a list of (source_id, target_id) for direct edges from source_node_id.
2025-01-29 07:31:34 -05:00
Demonstrates $graphLookup at maxDepth=0, though direct doc retrieval is simpler.
"""
pipeline = [
{"$match": {"_id": source_node_id}},
{
"$graphLookup": {
"from": self.collection.name,
"startWith": "$edges.target",
"connectFromField": "edges.target",
"connectToField": "_id",
"as": "neighbors",
"depthField": "depth",
"maxDepth": 0,
}
},
{"$project": {"_id": 0, "edges": 1}},
]
cursor = self.collection.aggregate(pipeline)
result = await cursor.to_list(None)
if not result:
return None
edges = result[0].get("edges", [])
return [(source_node_id, e["target"]) for e in edges]
2025-01-29 07:31:34 -05:00
#
# -------------------------------------------------------------------------
# UPSERTS
# -------------------------------------------------------------------------
#
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
2025-01-29 07:31:34 -05:00
"""
Insert or update a node document. If new, create an empty edges array.
"""
# By default, preserve existing 'edges'.
# We'll only set 'edges' to [] on insert (no overwrite).
update_doc = {"$set": {**node_data}, "$setOnInsert": {"edges": []}}
await self.collection.update_one({"_id": node_id}, update_doc, upsert=True)
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
) -> None:
2025-01-29 07:31:34 -05:00
"""
Upsert an edge from source_node_id -> target_node_id with optional 'relation'.
If an edge with the same target exists, we remove it and re-insert with updated data.
"""
# Ensure source node exists
await self.upsert_node(source_node_id, {})
# Remove existing edge (if any)
await self.collection.update_one(
{"_id": source_node_id}, {"$pull": {"edges": {"target": target_node_id}}}
)
# Insert new edge
new_edge = {"target": target_node_id}
new_edge.update(edge_data)
await self.collection.update_one(
{"_id": source_node_id}, {"$push": {"edges": new_edge}}
)
#
# -------------------------------------------------------------------------
# DELETION
# -------------------------------------------------------------------------
#
async def delete_node(self, node_id: str) -> None:
2025-01-29 07:31:34 -05:00
"""
1) Remove node's doc entirely.
2025-01-29 07:31:34 -05:00
2) Remove inbound edges from any doc that references node_id.
"""
# Remove inbound edges from all other docs
await self.collection.update_many({}, {"$pull": {"edges": {"target": node_id}}})
# Remove the node doc
await self.collection.delete_one({"_id": node_id})
#
# -------------------------------------------------------------------------
# EMBEDDINGS (NOT IMPLEMENTED)
# -------------------------------------------------------------------------
#
2025-02-16 13:55:30 +01:00
async def embed_nodes(
self, algorithm: str
) -> tuple[np.ndarray[Any, Any], list[str]]:
2025-01-29 07:31:34 -05:00
"""
Placeholder for demonstration, raises NotImplementedError.
"""
raise NotImplementedError("Node embedding is not used in lightrag.")
#
# -------------------------------------------------------------------------
# QUERY
# -------------------------------------------------------------------------
#
async def get_all_labels(self) -> list[str]:
"""
Get all existing node _id in the database
Returns:
[id1, id2, ...] # Alphabetically sorted id list
"""
# Use MongoDB's distinct and aggregation to get all unique labels
pipeline = [
{"$group": {"_id": "$_id"}}, # Group by _id
{"$sort": {"_id": 1}}, # Sort alphabetically
]
cursor = self.collection.aggregate(pipeline)
labels = []
async for doc in cursor:
labels.append(doc["_id"])
return labels
2025-02-16 13:55:30 +01:00
async def get_knowledge_graph(
self, node_label: str, max_depth: int = 5
) -> KnowledgeGraph:
"""
Get complete connected subgraph for specified node (including the starting node itself)
Args:
node_label: Label of the nodes to start from
max_depth: Maximum depth of traversal (default: 5)
Returns:
KnowledgeGraph object containing nodes and edges of the subgraph
"""
label = node_label
result = KnowledgeGraph()
seen_nodes = set()
seen_edges = set()
try:
if label == "*":
# Get all nodes and edges
async for node_doc in self.collection.find({}):
node_id = str(node_doc["_id"])
if node_id not in seen_nodes:
result.nodes.append(
KnowledgeGraphNode(
id=node_id,
labels=[node_doc.get("_id")],
properties={
k: v
for k, v in node_doc.items()
if k not in ["_id", "edges"]
},
)
)
seen_nodes.add(node_id)
# Process edges
for edge in node_doc.get("edges", []):
edge_id = f"{node_id}-{edge['target']}"
if edge_id not in seen_edges:
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type=edge.get("relation", ""),
source=node_id,
target=edge["target"],
properties={
k: v
for k, v in edge.items()
if k not in ["target", "relation"]
},
)
)
seen_edges.add(edge_id)
else:
# Verify if starting node exists
start_nodes = self.collection.find({"_id": label})
start_nodes_exist = await start_nodes.to_list(length=1)
if not start_nodes_exist:
logger.warning(f"Starting node with label {label} does not exist!")
return result
# Use $graphLookup for traversal
pipeline = [
{
"$match": {"_id": label}
}, # Start with nodes having the specified label
{
"$graphLookup": {
"from": self._collection_name,
"startWith": "$edges.target",
"connectFromField": "edges.target",
"connectToField": "_id",
"maxDepth": max_depth,
"depthField": "depth",
"as": "connected_nodes",
}
},
]
async for doc in self.collection.aggregate(pipeline):
# Add the start node
node_id = str(doc["_id"])
if node_id not in seen_nodes:
result.nodes.append(
KnowledgeGraphNode(
id=node_id,
labels=[
doc.get(
"_id",
)
],
properties={
k: v
for k, v in doc.items()
if k
not in [
"_id",
"edges",
"connected_nodes",
"depth",
]
},
)
)
seen_nodes.add(node_id)
# Add edges from start node
for edge in doc.get("edges", []):
edge_id = f"{node_id}-{edge['target']}"
if edge_id not in seen_edges:
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type=edge.get("relation", ""),
source=node_id,
target=edge["target"],
properties={
k: v
for k, v in edge.items()
if k not in ["target", "relation"]
},
)
)
seen_edges.add(edge_id)
# Add connected nodes and their edges
for connected in doc.get("connected_nodes", []):
node_id = str(connected["_id"])
if node_id not in seen_nodes:
result.nodes.append(
KnowledgeGraphNode(
id=node_id,
labels=[connected.get("_id")],
properties={
k: v
for k, v in connected.items()
if k not in ["_id", "edges", "depth"]
},
)
)
seen_nodes.add(node_id)
# Add edges from connected nodes
for edge in connected.get("edges", []):
edge_id = f"{node_id}-{edge['target']}"
if edge_id not in seen_edges:
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type=edge.get("relation", ""),
source=node_id,
target=edge["target"],
properties={
k: v
for k, v in edge.items()
if k not in ["target", "relation"]
},
)
)
seen_edges.add(edge_id)
logger.info(
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
)
except PyMongoError as e:
logger.error(f"MongoDB query failed: {str(e)}")
return result
async def index_done_callback(self) -> None:
2025-02-16 16:04:07 +01:00
# Mongo handles persistence automatically
pass
@final
@dataclass
class MongoVectorDBStorage(BaseVectorStorage):
def __post_init__(self):
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
cosine_threshold = kwargs.get("cosine_better_than_threshold")
if cosine_threshold is None:
raise ValueError(
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
)
self.cosine_better_than_threshold = cosine_threshold
self._collection_name = self.namespace
self._max_batch_size = self.global_config["embedding_batch_num"]
async def initialize(self):
if not hasattr(self, "db") or self.db is None:
self.db = await ClientManager.get_client()
self._data = await get_or_create_collection(self.db, self._collection_name)
# Ensure vector index exists
await self.create_vector_index()
logger.debug(f"Use MongoDB as VDB {self._collection_name}")
async def finalize(self):
if hasattr(self, "db") and self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
async def create_vector_index(self):
"""Creates an Atlas Vector Search index."""
try:
search_index_model = SearchIndexModel(
definition={
"fields": [
{
"type": "vector",
"numDimensions": self.embedding_func.embedding_dim, # Ensure correct dimensions
"path": "vector",
"similarity": "cosine", # Options: euclidean, cosine, dotProduct
}
]
},
name="vector_knn_index",
type="vectorSearch",
)
await self._data.create_search_index(search_index_model)
logger.info("Vector index created successfully.")
except PyMongoError as _:
logger.debug("vector index already exist")
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
logger.debug(f"Inserting {len(data)} vectors to {self.namespace}")
if not data:
logger.warning("You are inserting an empty data set to vector DB")
return []
list_data = [
{
"_id": k,
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
async def wrapped_task(batch):
result = await self.embedding_func(batch)
pbar.update(1)
return result
embedding_tasks = [wrapped_task(batch) for batch in batches]
pbar = tqdm_async(
total=len(embedding_tasks), desc="Generating embeddings", unit="batch"
)
embeddings_list = await asyncio.gather(*embedding_tasks)
embeddings = np.concatenate(embeddings_list)
for i, d in enumerate(list_data):
d["vector"] = np.array(embeddings[i], dtype=np.float32).tolist()
update_tasks = []
for doc in list_data:
update_tasks.append(
self._data.update_one({"_id": doc["_id"]}, {"$set": doc}, upsert=True)
)
await asyncio.gather(*update_tasks)
return list_data
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
"""Queries the vector database using Atlas Vector Search."""
# Generate the embedding
embedding = await self.embedding_func([query])
# Convert numpy array to a list to ensure compatibility with MongoDB
query_vector = embedding[0].tolist()
# Define the aggregation pipeline with the converted query vector
pipeline = [
{
"$vectorSearch": {
"index": "vector_knn_index", # Ensure this matches the created index name
"path": "vector",
"queryVector": query_vector,
"numCandidates": 100, # Adjust for performance
"limit": top_k,
}
},
{"$addFields": {"score": {"$meta": "vectorSearchScore"}}},
{"$match": {"score": {"$gte": self.cosine_better_than_threshold}}},
{"$project": {"vector": 0}},
]
# Execute the aggregation pipeline
cursor = self._data.aggregate(pipeline)
results = await cursor.to_list()
# Format and return the results
return [
{**doc, "id": doc["_id"], "distance": doc.get("score", None)}
for doc in results
]
async def index_done_callback(self) -> None:
2025-02-16 16:04:07 +01:00
# Mongo handles persistence automatically
pass
2025-02-16 13:55:30 +01:00
async def delete_entity(self, entity_name: str) -> None:
raise NotImplementedError
async def delete_entity_relation(self, entity_name: str) -> None:
raise NotImplementedError
2025-02-16 13:55:30 +01:00
async def get_or_create_collection(db: AsyncIOMotorDatabase, collection_name: str):
collection_names = await db.list_collection_names()
if collection_name not in collection_names:
collection = await db.create_collection(collection_name)
logger.info(f"Created collection: {collection_name}")
return collection
else:
logger.debug(f"Collection '{collection_name}' already exists.")
return db.get_collection(collection_name)