2025-01-31 23:35:42 +08:00
|
|
|
from fastapi import (
|
|
|
|
FastAPI,
|
|
|
|
HTTPException,
|
|
|
|
File,
|
|
|
|
UploadFile,
|
|
|
|
BackgroundTasks,
|
|
|
|
)
|
2025-02-14 01:12:39 +08:00
|
|
|
import asyncio
|
2025-01-30 23:27:43 +01:00
|
|
|
import threading
|
|
|
|
import os
|
2025-02-05 22:15:14 +08:00
|
|
|
import json
|
|
|
|
import re
|
2025-01-24 13:55:50 +01:00
|
|
|
from fastapi.staticfiles import StaticFiles
|
2024-12-22 00:38:38 +01:00
|
|
|
import logging
|
|
|
|
import argparse
|
2025-02-15 22:25:48 +08:00
|
|
|
from typing import List, Any, Optional, Dict
|
2025-02-05 22:15:14 +08:00
|
|
|
from pydantic import BaseModel
|
2024-12-22 00:38:38 +01:00
|
|
|
from lightrag import LightRAG, QueryParam
|
2025-02-06 15:56:18 +08:00
|
|
|
from lightrag.types import GPTKeywordExtractionFormat
|
2025-01-17 00:53:49 +01:00
|
|
|
from lightrag.api import __api_version__
|
2024-12-22 00:38:38 +01:00
|
|
|
from lightrag.utils import EmbeddingFunc
|
|
|
|
from enum import Enum
|
|
|
|
from pathlib import Path
|
|
|
|
import shutil
|
|
|
|
import aiofiles
|
2025-01-17 00:53:49 +01:00
|
|
|
from ascii_colors import trace_exception, ASCIIColors
|
2025-01-27 02:45:44 +08:00
|
|
|
import sys
|
2025-01-04 02:23:39 +01:00
|
|
|
from fastapi import Depends, Security
|
2025-01-04 02:21:37 +01:00
|
|
|
from fastapi.security import APIKeyHeader
|
|
|
|
from fastapi.middleware.cors import CORSMiddleware
|
2025-01-16 23:21:50 +01:00
|
|
|
from contextlib import asynccontextmanager
|
2025-01-04 02:21:37 +01:00
|
|
|
from starlette.status import HTTP_403_FORBIDDEN
|
2025-01-14 23:08:39 +01:00
|
|
|
import pipmaster as pm
|
2025-01-17 02:34:29 +01:00
|
|
|
from dotenv import load_dotenv
|
2025-02-13 01:11:09 +08:00
|
|
|
import configparser
|
2025-02-15 22:25:48 +08:00
|
|
|
import traceback
|
|
|
|
from datetime import datetime
|
|
|
|
|
2025-02-13 01:11:09 +08:00
|
|
|
from lightrag.utils import logger
|
2025-02-05 22:15:14 +08:00
|
|
|
from .ollama_api import (
|
|
|
|
OllamaAPI,
|
|
|
|
)
|
|
|
|
from .ollama_api import ollama_server_infos
|
2025-02-13 01:11:09 +08:00
|
|
|
from ..kg.postgres_impl import (
|
|
|
|
PostgreSQLDB,
|
|
|
|
PGKVStorage,
|
|
|
|
PGVectorStorage,
|
|
|
|
PGGraphStorage,
|
|
|
|
PGDocStatusStorage,
|
|
|
|
)
|
|
|
|
from ..kg.oracle_impl import (
|
|
|
|
OracleDB,
|
|
|
|
OracleKVStorage,
|
|
|
|
OracleVectorDBStorage,
|
|
|
|
OracleGraphStorage,
|
|
|
|
)
|
|
|
|
from ..kg.tidb_impl import (
|
|
|
|
TiDB,
|
|
|
|
TiDBKVStorage,
|
|
|
|
TiDBVectorDBStorage,
|
|
|
|
TiDBGraphStorage,
|
|
|
|
)
|
2025-01-17 02:34:29 +01:00
|
|
|
|
2025-02-01 15:22:40 +08:00
|
|
|
# Load environment variables
|
2025-02-07 23:04:29 +08:00
|
|
|
load_dotenv(override=True)
|
2025-01-19 04:44:30 +08:00
|
|
|
|
2025-02-13 01:11:09 +08:00
|
|
|
# Initialize config parser
|
|
|
|
config = configparser.ConfigParser()
|
|
|
|
config.read("config.ini")
|
|
|
|
|
2025-02-13 04:12:00 +08:00
|
|
|
|
2025-02-13 04:04:51 +08:00
|
|
|
class DefaultRAGStorageConfig:
|
|
|
|
KV_STORAGE = "JsonKVStorage"
|
|
|
|
VECTOR_STORAGE = "NanoVectorDBStorage"
|
|
|
|
GRAPH_STORAGE = "NetworkXStorage"
|
|
|
|
DOC_STATUS_STORAGE = "JsonDocStatusStorage"
|
2025-02-05 22:15:14 +08:00
|
|
|
|
2025-02-13 04:12:00 +08:00
|
|
|
|
2025-02-01 15:22:40 +08:00
|
|
|
# Global progress tracker
|
|
|
|
scan_progress: Dict = {
|
|
|
|
"is_scanning": False,
|
|
|
|
"current_file": "",
|
|
|
|
"indexed_count": 0,
|
|
|
|
"total_files": 0,
|
|
|
|
"progress": 0,
|
|
|
|
}
|
|
|
|
|
|
|
|
# Lock for thread-safe operations
|
|
|
|
progress_lock = threading.Lock()
|
|
|
|
|
2025-01-19 08:07:26 +08:00
|
|
|
|
2025-01-19 04:44:30 +08:00
|
|
|
def estimate_tokens(text: str) -> int:
|
|
|
|
"""Estimate the number of tokens in text
|
|
|
|
Chinese characters: approximately 1.5 tokens per character
|
|
|
|
English characters: approximately 0.25 tokens per character
|
|
|
|
"""
|
|
|
|
# Use regex to match Chinese and non-Chinese characters separately
|
|
|
|
chinese_chars = len(re.findall(r"[\u4e00-\u9fff]", text))
|
|
|
|
non_chinese_chars = len(re.findall(r"[^\u4e00-\u9fff]", text))
|
|
|
|
|
|
|
|
# Calculate estimated token count
|
|
|
|
tokens = chinese_chars * 1.5 + non_chinese_chars * 0.25
|
|
|
|
|
|
|
|
return int(tokens)
|
|
|
|
|
2025-02-13 21:01:34 +08:00
|
|
|
|
2025-01-10 20:30:58 +01:00
|
|
|
def get_default_host(binding_type: str) -> str:
|
|
|
|
default_hosts = {
|
2025-01-19 04:44:30 +08:00
|
|
|
"ollama": os.getenv("LLM_BINDING_HOST", "http://localhost:11434"),
|
|
|
|
"lollms": os.getenv("LLM_BINDING_HOST", "http://localhost:9600"),
|
|
|
|
"azure_openai": os.getenv("AZURE_OPENAI_ENDPOINT", "https://api.openai.com/v1"),
|
|
|
|
"openai": os.getenv("LLM_BINDING_HOST", "https://api.openai.com/v1"),
|
2025-01-10 20:30:58 +01:00
|
|
|
}
|
2025-01-11 01:37:07 +01:00
|
|
|
return default_hosts.get(
|
2025-01-19 04:44:30 +08:00
|
|
|
binding_type, os.getenv("LLM_BINDING_HOST", "http://localhost:11434")
|
2025-01-11 01:37:07 +01:00
|
|
|
) # fallback to ollama if unknown
|
|
|
|
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-16 23:21:50 +01:00
|
|
|
def get_env_value(env_key: str, default: Any, value_type: type = str) -> Any:
|
|
|
|
"""
|
|
|
|
Get value from environment variable with type conversion
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-16 23:21:50 +01:00
|
|
|
Args:
|
|
|
|
env_key (str): Environment variable key
|
|
|
|
default (Any): Default value if env variable is not set
|
|
|
|
value_type (type): Type to convert the value to
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-16 23:21:50 +01:00
|
|
|
Returns:
|
|
|
|
Any: Converted value from environment or default
|
|
|
|
"""
|
|
|
|
value = os.getenv(env_key)
|
|
|
|
if value is None:
|
|
|
|
return default
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-17 02:34:29 +01:00
|
|
|
if isinstance(value_type, bool):
|
2025-01-17 01:36:16 +01:00
|
|
|
return value.lower() in ("true", "1", "yes")
|
2025-01-16 23:21:50 +01:00
|
|
|
try:
|
|
|
|
return value_type(value)
|
|
|
|
except ValueError:
|
|
|
|
return default
|
|
|
|
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-17 00:53:49 +01:00
|
|
|
def display_splash_screen(args: argparse.Namespace) -> None:
|
|
|
|
"""
|
|
|
|
Display a colorful splash screen showing LightRAG server configuration
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-17 00:53:49 +01:00
|
|
|
Args:
|
|
|
|
args: Parsed command line arguments
|
|
|
|
"""
|
|
|
|
# Banner
|
|
|
|
ASCIIColors.cyan(f"""
|
|
|
|
╔══════════════════════════════════════════════════════════════╗
|
|
|
|
║ 🚀 LightRAG Server v{__api_version__} ║
|
|
|
|
║ Fast, Lightweight RAG Server Implementation ║
|
|
|
|
╚══════════════════════════════════════════════════════════════╝
|
|
|
|
""")
|
|
|
|
|
|
|
|
# Server Configuration
|
|
|
|
ASCIIColors.magenta("\n📡 Server Configuration:")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Host: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.host}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Port: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.port}")
|
2025-02-15 11:46:47 +08:00
|
|
|
ASCIIColors.white(" ├─ CORS Origins: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{os.getenv('CORS_ORIGINS', '*')}")
|
|
|
|
ASCIIColors.white(" ├─ SSL Enabled: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.ssl}")
|
2025-02-15 11:46:47 +08:00
|
|
|
ASCIIColors.white(" └─ API Key: ", end="")
|
|
|
|
ASCIIColors.yellow("Set" if args.key else "Not Set")
|
2025-01-17 00:53:49 +01:00
|
|
|
if args.ssl:
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ SSL Cert: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.ssl_certfile}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" └─ SSL Key: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.ssl_keyfile}")
|
|
|
|
|
|
|
|
# Directory Configuration
|
|
|
|
ASCIIColors.magenta("\n📂 Directory Configuration:")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Working Directory: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.working_dir}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" └─ Input Directory: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.input_dir}")
|
|
|
|
|
|
|
|
# LLM Configuration
|
|
|
|
ASCIIColors.magenta("\n🤖 LLM Configuration:")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Binding: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.llm_binding}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Host: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.llm_binding_host}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" └─ Model: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.llm_model}")
|
|
|
|
|
|
|
|
# Embedding Configuration
|
|
|
|
ASCIIColors.magenta("\n📊 Embedding Configuration:")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Binding: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.embedding_binding}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Host: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.embedding_binding_host}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Model: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.embedding_model}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" └─ Dimensions: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.embedding_dim}")
|
|
|
|
|
|
|
|
# RAG Configuration
|
|
|
|
ASCIIColors.magenta("\n⚙️ RAG Configuration:")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Max Async Operations: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.max_async}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Max Tokens: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.max_tokens}")
|
2025-01-26 05:09:42 +08:00
|
|
|
ASCIIColors.white(" ├─ Max Embed Tokens: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.max_embed_tokens}")
|
2025-01-26 05:09:42 +08:00
|
|
|
ASCIIColors.white(" ├─ Chunk Size: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{args.chunk_size}")
|
|
|
|
ASCIIColors.white(" ├─ Chunk Overlap Size: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{args.chunk_overlap_size}")
|
2025-01-29 21:34:34 +08:00
|
|
|
ASCIIColors.white(" ├─ History Turns: ", end="")
|
2025-01-26 05:09:42 +08:00
|
|
|
ASCIIColors.yellow(f"{args.history_turns}")
|
2025-01-29 21:34:34 +08:00
|
|
|
ASCIIColors.white(" ├─ Cosine Threshold: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{args.cosine_threshold}")
|
|
|
|
ASCIIColors.white(" └─ Top-K: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{args.top_k}")
|
2025-01-17 00:53:49 +01:00
|
|
|
|
|
|
|
# System Configuration
|
2025-02-11 14:57:37 +08:00
|
|
|
ASCIIColors.magenta("\n💾 Storage Configuration:")
|
|
|
|
ASCIIColors.white(" ├─ KV Storage: ", end="")
|
2025-02-13 04:04:51 +08:00
|
|
|
ASCIIColors.yellow(f"{args.kv_storage}")
|
|
|
|
ASCIIColors.white(" ├─ Vector Storage: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{args.vector_storage}")
|
2025-02-11 14:57:37 +08:00
|
|
|
ASCIIColors.white(" ├─ Graph Storage: ", end="")
|
2025-02-13 04:04:51 +08:00
|
|
|
ASCIIColors.yellow(f"{args.graph_storage}")
|
|
|
|
ASCIIColors.white(" └─ Document Status Storage: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{args.doc_status_storage}")
|
2025-02-11 14:57:37 +08:00
|
|
|
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.magenta("\n🛠️ System Configuration:")
|
2025-01-21 03:13:13 +08:00
|
|
|
ASCIIColors.white(" ├─ Ollama Emulating Model: ", end="")
|
2025-01-28 15:30:36 +01:00
|
|
|
ASCIIColors.yellow(f"{ollama_server_infos.LIGHTRAG_MODEL}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Log Level: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.log_level}")
|
2025-02-15 11:46:47 +08:00
|
|
|
ASCIIColors.white(" └─ Timeout: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.timeout if args.timeout else 'None (infinite)'}")
|
|
|
|
|
|
|
|
# Server Status
|
|
|
|
ASCIIColors.green("\n✨ Server starting up...\n")
|
|
|
|
|
2025-01-17 00:54:24 +01:00
|
|
|
# Server Access Information
|
|
|
|
protocol = "https" if args.ssl else "http"
|
|
|
|
if args.host == "0.0.0.0":
|
|
|
|
ASCIIColors.magenta("\n🌐 Server Access Information:")
|
|
|
|
ASCIIColors.white(" ├─ Local Access: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}")
|
|
|
|
ASCIIColors.white(" ├─ Remote Access: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{protocol}://<your-ip-address>:{args.port}")
|
|
|
|
ASCIIColors.white(" ├─ API Documentation (local): ", end="")
|
|
|
|
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/docs")
|
2025-02-13 20:40:29 +08:00
|
|
|
ASCIIColors.white(" ├─ Alternative Documentation (local): ", end="")
|
2025-01-17 00:54:24 +01:00
|
|
|
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/redoc")
|
2025-02-13 18:03:09 +08:00
|
|
|
ASCIIColors.white(" ├─ WebUI (local): ", end="")
|
|
|
|
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/webui")
|
2025-02-13 20:40:29 +08:00
|
|
|
ASCIIColors.white(" └─ Graph Viewer (local): ", end="")
|
2025-02-13 18:03:09 +08:00
|
|
|
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/graph-viewer")
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-17 00:54:24 +01:00
|
|
|
ASCIIColors.yellow("\n📝 Note:")
|
|
|
|
ASCIIColors.white(""" Since the server is running on 0.0.0.0:
|
|
|
|
- Use 'localhost' or '127.0.0.1' for local access
|
|
|
|
- Use your machine's IP address for remote access
|
|
|
|
- To find your IP address:
|
|
|
|
• Windows: Run 'ipconfig' in terminal
|
|
|
|
• Linux/Mac: Run 'ifconfig' or 'ip addr' in terminal
|
|
|
|
""")
|
|
|
|
else:
|
|
|
|
base_url = f"{protocol}://{args.host}:{args.port}"
|
|
|
|
ASCIIColors.magenta("\n🌐 Server Access Information:")
|
|
|
|
ASCIIColors.white(" ├─ Base URL: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{base_url}")
|
|
|
|
ASCIIColors.white(" ├─ API Documentation: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{base_url}/docs")
|
|
|
|
ASCIIColors.white(" └─ Alternative Documentation: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{base_url}/redoc")
|
|
|
|
|
|
|
|
# Usage Examples
|
|
|
|
ASCIIColors.magenta("\n📚 Quick Start Guide:")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.cyan("""
|
2025-01-17 00:54:24 +01:00
|
|
|
1. Access the Swagger UI:
|
|
|
|
Open your browser and navigate to the API documentation URL above
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-17 00:54:24 +01:00
|
|
|
2. API Authentication:""")
|
|
|
|
if args.key:
|
|
|
|
ASCIIColors.cyan(""" Add the following header to your requests:
|
|
|
|
X-API-Key: <your-api-key>
|
|
|
|
""")
|
|
|
|
else:
|
|
|
|
ASCIIColors.cyan(" No authentication required\n")
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-17 00:54:24 +01:00
|
|
|
ASCIIColors.cyan(""" 3. Basic Operations:
|
|
|
|
- POST /upload_document: Upload new documents to RAG
|
|
|
|
- POST /query: Query your document collection
|
|
|
|
- GET /collections: List available collections
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-17 00:54:24 +01:00
|
|
|
4. Monitor the server:
|
|
|
|
- Check server logs for detailed operation information
|
|
|
|
- Use healthcheck endpoint: GET /health
|
|
|
|
""")
|
|
|
|
|
|
|
|
# Security Notice
|
|
|
|
if args.key:
|
|
|
|
ASCIIColors.yellow("\n⚠️ Security Notice:")
|
|
|
|
ASCIIColors.white(""" API Key authentication is enabled.
|
|
|
|
Make sure to include the X-API-Key header in all your requests.
|
|
|
|
""")
|
|
|
|
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.green("Server is ready to accept connections! 🚀\n")
|
2025-01-17 00:53:49 +01:00
|
|
|
|
2025-01-27 02:45:44 +08:00
|
|
|
# Ensure splash output flush to system log
|
|
|
|
sys.stdout.flush()
|
2025-01-17 00:53:49 +01:00
|
|
|
|
|
|
|
|
2025-01-16 23:21:50 +01:00
|
|
|
def parse_args() -> argparse.Namespace:
|
|
|
|
"""
|
|
|
|
Parse command line arguments with environment variable fallback
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-16 23:21:50 +01:00
|
|
|
Returns:
|
|
|
|
argparse.Namespace: Parsed arguments
|
|
|
|
"""
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
parser = argparse.ArgumentParser(
|
|
|
|
description="LightRAG FastAPI Server with separate working and input directories"
|
|
|
|
)
|
|
|
|
|
2025-02-11 00:55:52 +08:00
|
|
|
parser.add_argument(
|
|
|
|
"--kv-storage",
|
2025-02-13 04:12:00 +08:00
|
|
|
default=get_env_value(
|
|
|
|
"LIGHTRAG_KV_STORAGE", DefaultRAGStorageConfig.KV_STORAGE
|
|
|
|
),
|
2025-02-13 04:04:51 +08:00
|
|
|
help=f"KV存储实现 (default: {DefaultRAGStorageConfig.KV_STORAGE})",
|
2025-02-11 00:55:52 +08:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--doc-status-storage",
|
2025-02-13 04:12:00 +08:00
|
|
|
default=get_env_value(
|
|
|
|
"LIGHTRAG_DOC_STATUS_STORAGE", DefaultRAGStorageConfig.DOC_STATUS_STORAGE
|
|
|
|
),
|
2025-02-13 04:04:51 +08:00
|
|
|
help=f"文档状态存储实现 (default: {DefaultRAGStorageConfig.DOC_STATUS_STORAGE})",
|
2025-02-11 00:55:52 +08:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--graph-storage",
|
2025-02-13 04:12:00 +08:00
|
|
|
default=get_env_value(
|
|
|
|
"LIGHTRAG_GRAPH_STORAGE", DefaultRAGStorageConfig.GRAPH_STORAGE
|
|
|
|
),
|
2025-02-13 04:04:51 +08:00
|
|
|
help=f"图存储实现 (default: {DefaultRAGStorageConfig.GRAPH_STORAGE})",
|
2025-02-11 00:55:52 +08:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--vector-storage",
|
2025-02-13 04:12:00 +08:00
|
|
|
default=get_env_value(
|
|
|
|
"LIGHTRAG_VECTOR_STORAGE", DefaultRAGStorageConfig.VECTOR_STORAGE
|
|
|
|
),
|
2025-02-13 04:04:51 +08:00
|
|
|
help=f"向量存储实现 (default: {DefaultRAGStorageConfig.VECTOR_STORAGE})",
|
2025-02-11 00:55:52 +08:00
|
|
|
)
|
|
|
|
|
2025-01-26 05:09:42 +08:00
|
|
|
# Bindings configuration
|
2025-01-10 20:30:58 +01:00
|
|
|
parser.add_argument(
|
|
|
|
"--llm-binding",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("LLM_BINDING", "ollama"),
|
|
|
|
help="LLM binding to be used. Supported: lollms, ollama, openai (default: from env or ollama)",
|
2025-01-10 20:30:58 +01:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--embedding-binding",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("EMBEDDING_BINDING", "ollama"),
|
|
|
|
help="Embedding binding to be used. Supported: lollms, ollama, openai (default: from env or ollama)",
|
2025-01-10 20:30:58 +01:00
|
|
|
)
|
2025-01-11 01:37:07 +01:00
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
# Server configuration
|
|
|
|
parser.add_argument(
|
2025-01-16 23:21:50 +01:00
|
|
|
"--host",
|
|
|
|
default=get_env_value("HOST", "0.0.0.0"),
|
2025-01-17 01:36:16 +01:00
|
|
|
help="Server host (default: from env or 0.0.0.0)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
2025-01-16 23:21:50 +01:00
|
|
|
"--port",
|
|
|
|
type=int,
|
|
|
|
default=get_env_value("PORT", 9621, int),
|
2025-01-17 01:36:16 +01:00
|
|
|
help="Server port (default: from env or 9621)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
# Directory configuration
|
|
|
|
parser.add_argument(
|
|
|
|
"--working-dir",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("WORKING_DIR", "./rag_storage"),
|
|
|
|
help="Working directory for RAG storage (default: from env or ./rag_storage)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--input-dir",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("INPUT_DIR", "./inputs"),
|
|
|
|
help="Directory containing input documents (default: from env or ./inputs)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
|
2025-01-10 20:30:58 +01:00
|
|
|
# LLM Model configuration
|
2024-12-22 00:38:38 +01:00
|
|
|
parser.add_argument(
|
2025-01-10 20:30:58 +01:00
|
|
|
"--llm-binding-host",
|
2025-01-26 05:09:42 +08:00
|
|
|
default=get_env_value("LLM_BINDING_HOST", None),
|
2025-01-26 05:10:57 +08:00
|
|
|
help="LLM server host URL. If not provided, defaults based on llm-binding:\n"
|
|
|
|
+ "- ollama: http://localhost:11434\n"
|
|
|
|
+ "- lollms: http://localhost:9600\n"
|
|
|
|
+ "- openai: https://api.openai.com/v1",
|
2025-01-10 20:30:58 +01:00
|
|
|
)
|
2025-01-20 00:26:28 +01:00
|
|
|
|
|
|
|
default_llm_api_key = get_env_value("LLM_BINDING_API_KEY", None)
|
|
|
|
|
2025-01-17 11:18:45 +01:00
|
|
|
parser.add_argument(
|
|
|
|
"--llm-binding-api-key",
|
|
|
|
default=default_llm_api_key,
|
2025-01-20 00:26:28 +01:00
|
|
|
help="llm server API key (default: from env or empty string)",
|
2025-01-17 11:18:45 +01:00
|
|
|
)
|
2025-01-10 20:30:58 +01:00
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--llm-model",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("LLM_MODEL", "mistral-nemo:latest"),
|
|
|
|
help="LLM model name (default: from env or mistral-nemo:latest)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
2025-01-10 20:30:58 +01:00
|
|
|
|
|
|
|
# Embedding model configuration
|
|
|
|
parser.add_argument(
|
|
|
|
"--embedding-binding-host",
|
2025-01-26 05:09:42 +08:00
|
|
|
default=get_env_value("EMBEDDING_BINDING_HOST", None),
|
2025-01-26 05:10:57 +08:00
|
|
|
help="Embedding server host URL. If not provided, defaults based on embedding-binding:\n"
|
|
|
|
+ "- ollama: http://localhost:11434\n"
|
|
|
|
+ "- lollms: http://localhost:9600\n"
|
|
|
|
+ "- openai: https://api.openai.com/v1",
|
2025-01-10 20:30:58 +01:00
|
|
|
)
|
2025-01-20 00:26:28 +01:00
|
|
|
|
|
|
|
default_embedding_api_key = get_env_value("EMBEDDING_BINDING_API_KEY", "")
|
2025-01-17 11:18:45 +01:00
|
|
|
parser.add_argument(
|
|
|
|
"--embedding-binding-api-key",
|
|
|
|
default=default_embedding_api_key,
|
2025-01-20 00:26:28 +01:00
|
|
|
help="embedding server API key (default: from env or empty string)",
|
2025-01-17 11:18:45 +01:00
|
|
|
)
|
2025-01-10 20:30:58 +01:00
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
parser.add_argument(
|
|
|
|
"--embedding-model",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("EMBEDDING_MODEL", "bge-m3:latest"),
|
|
|
|
help="Embedding model name (default: from env or bge-m3:latest)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
|
2025-01-23 22:58:57 +08:00
|
|
|
parser.add_argument(
|
|
|
|
"--chunk_size",
|
2025-01-26 02:31:16 +08:00
|
|
|
default=get_env_value("CHUNK_SIZE", 1200),
|
|
|
|
help="chunk chunk size default 1200",
|
2025-01-23 22:58:57 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--chunk_overlap_size",
|
2025-01-26 02:31:16 +08:00
|
|
|
default=get_env_value("CHUNK_OVERLAP_SIZE", 100),
|
|
|
|
help="chunk overlap size default 100",
|
2025-01-23 22:58:57 +08:00
|
|
|
)
|
|
|
|
|
2025-01-10 22:17:13 +01:00
|
|
|
def timeout_type(value):
|
|
|
|
if value is None or value == "None":
|
|
|
|
return None
|
|
|
|
return int(value)
|
|
|
|
|
2025-01-10 21:39:25 +01:00
|
|
|
parser.add_argument(
|
|
|
|
"--timeout",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("TIMEOUT", None, timeout_type),
|
2025-01-10 22:17:13 +01:00
|
|
|
type=timeout_type,
|
|
|
|
help="Timeout in seconds (useful when using slow AI). Use None for infinite timeout",
|
2025-01-10 21:39:25 +01:00
|
|
|
)
|
2025-01-16 23:21:50 +01:00
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
# RAG configuration
|
|
|
|
parser.add_argument(
|
2025-01-16 23:21:50 +01:00
|
|
|
"--max-async",
|
|
|
|
type=int,
|
|
|
|
default=get_env_value("MAX_ASYNC", 4, int),
|
2025-01-17 01:36:16 +01:00
|
|
|
help="Maximum async operations (default: from env or 4)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--max-tokens",
|
|
|
|
type=int,
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("MAX_TOKENS", 32768, int),
|
|
|
|
help="Maximum token size (default: from env or 32768)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--embedding-dim",
|
|
|
|
type=int,
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("EMBEDDING_DIM", 1024, int),
|
|
|
|
help="Embedding dimensions (default: from env or 1024)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--max-embed-tokens",
|
|
|
|
type=int,
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("MAX_EMBED_TOKENS", 8192, int),
|
|
|
|
help="Maximum embedding token size (default: from env or 8192)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
# Logging configuration
|
|
|
|
parser.add_argument(
|
|
|
|
"--log-level",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("LOG_LEVEL", "INFO"),
|
2024-12-22 00:38:38 +01:00
|
|
|
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
|
2025-01-16 23:21:50 +01:00
|
|
|
help="Logging level (default: from env or INFO)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
|
2025-01-04 02:23:39 +01:00
|
|
|
parser.add_argument(
|
|
|
|
"--key",
|
|
|
|
type=str,
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("LIGHTRAG_API_KEY", None),
|
2025-01-04 02:23:39 +01:00
|
|
|
help="API key for authentication. This protects lightrag server against unauthorized access",
|
|
|
|
)
|
2025-01-04 02:21:37 +01:00
|
|
|
|
2025-01-10 21:39:25 +01:00
|
|
|
# Optional https parameters
|
|
|
|
parser.add_argument(
|
2025-01-16 23:21:50 +01:00
|
|
|
"--ssl",
|
|
|
|
action="store_true",
|
|
|
|
default=get_env_value("SSL", False, bool),
|
2025-01-17 01:36:16 +01:00
|
|
|
help="Enable HTTPS (default: from env or False)",
|
2025-01-10 21:39:25 +01:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--ssl-certfile",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("SSL_CERTFILE", None),
|
2025-01-11 01:37:07 +01:00
|
|
|
help="Path to SSL certificate file (required if --ssl is enabled)",
|
2025-01-10 21:39:25 +01:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--ssl-keyfile",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("SSL_KEYFILE", None),
|
2025-01-11 01:37:07 +01:00
|
|
|
help="Path to SSL private key file (required if --ssl is enabled)",
|
2025-01-10 21:39:25 +01:00
|
|
|
)
|
2025-01-24 17:04:02 +01:00
|
|
|
parser.add_argument(
|
2025-01-24 21:01:34 +01:00
|
|
|
"--auto-scan-at-startup",
|
|
|
|
action="store_true",
|
2025-01-24 17:04:02 +01:00
|
|
|
default=False,
|
2025-01-24 21:01:34 +01:00
|
|
|
help="Enable automatic scanning when the program starts",
|
2025-01-24 17:04:02 +01:00
|
|
|
)
|
|
|
|
|
2025-01-25 22:14:40 +08:00
|
|
|
parser.add_argument(
|
|
|
|
"--history-turns",
|
|
|
|
type=int,
|
2025-01-26 05:19:51 +08:00
|
|
|
default=get_env_value("HISTORY_TURNS", 3, int),
|
|
|
|
help="Number of conversation history turns to include (default: from env or 3)",
|
2025-01-25 22:14:40 +08:00
|
|
|
)
|
|
|
|
|
2025-01-29 21:34:34 +08:00
|
|
|
# Search parameters
|
|
|
|
parser.add_argument(
|
|
|
|
"--top-k",
|
|
|
|
type=int,
|
2025-02-13 06:05:21 +08:00
|
|
|
default=get_env_value("TOP_K", 60, int),
|
|
|
|
help="Number of most similar results to return (default: from env or 60)",
|
2025-01-29 21:34:34 +08:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--cosine-threshold",
|
|
|
|
type=float,
|
2025-02-13 06:05:21 +08:00
|
|
|
default=get_env_value("COSINE_THRESHOLD", 0.2, float),
|
2025-01-29 21:34:34 +08:00
|
|
|
help="Cosine similarity threshold (default: from env or 0.4)",
|
|
|
|
)
|
|
|
|
|
2025-02-05 22:15:14 +08:00
|
|
|
# Ollama model name
|
2025-01-28 15:03:26 +01:00
|
|
|
parser.add_argument(
|
|
|
|
"--simulated-model-name",
|
2025-01-28 15:32:41 +01:00
|
|
|
type=str,
|
2025-01-28 18:20:45 +01:00
|
|
|
default=get_env_value(
|
|
|
|
"SIMULATED_MODEL_NAME", ollama_server_infos.LIGHTRAG_MODEL
|
|
|
|
),
|
2025-01-28 15:03:26 +01:00
|
|
|
help="Number of conversation history turns to include (default: from env or 3)",
|
|
|
|
)
|
|
|
|
|
2025-02-07 23:04:29 +08:00
|
|
|
# Namespace
|
|
|
|
parser.add_argument(
|
|
|
|
"--namespace-prefix",
|
|
|
|
type=str,
|
2025-02-07 23:13:28 +08:00
|
|
|
default=get_env_value("NAMESPACE_PREFIX", ""),
|
2025-02-07 23:04:29 +08:00
|
|
|
help="Prefix of the namespace",
|
|
|
|
)
|
|
|
|
|
2025-01-17 00:53:49 +01:00
|
|
|
args = parser.parse_args()
|
|
|
|
|
2025-02-14 12:50:43 +08:00
|
|
|
# conver relative path to absolute path
|
|
|
|
args.working_dir = os.path.abspath(args.working_dir)
|
|
|
|
args.input_dir = os.path.abspath(args.input_dir)
|
|
|
|
|
2025-01-28 15:30:36 +01:00
|
|
|
ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name
|
2025-01-28 15:03:26 +01:00
|
|
|
|
2025-01-17 00:53:49 +01:00
|
|
|
return args
|
2024-12-22 00:38:38 +01:00
|
|
|
|
|
|
|
|
|
|
|
class DocumentManager:
|
|
|
|
"""Handles document operations and tracking"""
|
|
|
|
|
2025-01-14 23:11:23 +01:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
input_dir: str,
|
2025-02-05 02:33:26 +08:00
|
|
|
supported_extensions: tuple = (
|
|
|
|
".txt",
|
|
|
|
".md",
|
|
|
|
".pdf",
|
|
|
|
".docx",
|
|
|
|
".pptx",
|
|
|
|
".xlsx",
|
|
|
|
),
|
2025-01-14 23:11:23 +01:00
|
|
|
):
|
2024-12-22 00:38:38 +01:00
|
|
|
self.input_dir = Path(input_dir)
|
|
|
|
self.supported_extensions = supported_extensions
|
|
|
|
self.indexed_files = set()
|
|
|
|
|
|
|
|
# Create input directory if it doesn't exist
|
|
|
|
self.input_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
2025-01-30 23:27:43 +01:00
|
|
|
def scan_directory_for_new_files(self) -> List[Path]:
|
2024-12-22 00:38:38 +01:00
|
|
|
"""Scan input directory for new files"""
|
|
|
|
new_files = []
|
|
|
|
for ext in self.supported_extensions:
|
2025-02-14 12:50:43 +08:00
|
|
|
logger.info(f"Scanning for {ext} files in {self.input_dir}")
|
2024-12-22 00:38:38 +01:00
|
|
|
for file_path in self.input_dir.rglob(f"*{ext}"):
|
|
|
|
if file_path not in self.indexed_files:
|
|
|
|
new_files.append(file_path)
|
|
|
|
return new_files
|
|
|
|
|
2025-01-30 23:27:43 +01:00
|
|
|
def scan_directory(self) -> List[Path]:
|
|
|
|
"""Scan input directory for new files"""
|
|
|
|
new_files = []
|
|
|
|
for ext in self.supported_extensions:
|
|
|
|
for file_path in self.input_dir.rglob(f"*{ext}"):
|
|
|
|
new_files.append(file_path)
|
|
|
|
return new_files
|
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
def mark_as_indexed(self, file_path: Path):
|
|
|
|
"""Mark a file as indexed"""
|
|
|
|
self.indexed_files.add(file_path)
|
|
|
|
|
|
|
|
def is_supported_file(self, filename: str) -> bool:
|
|
|
|
"""Check if file type is supported"""
|
|
|
|
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
|
|
|
|
|
|
|
|
|
2025-02-05 22:15:14 +08:00
|
|
|
# LightRAG query mode
|
2024-12-22 00:38:38 +01:00
|
|
|
class SearchMode(str, Enum):
|
|
|
|
naive = "naive"
|
|
|
|
local = "local"
|
|
|
|
global_ = "global"
|
|
|
|
hybrid = "hybrid"
|
2025-01-19 04:44:30 +08:00
|
|
|
mix = "mix"
|
2024-12-22 00:38:38 +01:00
|
|
|
|
2025-02-05 22:29:07 +08:00
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
class QueryRequest(BaseModel):
|
|
|
|
query: str
|
2025-02-16 21:11:05 +08:00
|
|
|
|
|
|
|
"""Specifies the retrieval mode"""
|
2024-12-22 00:38:38 +01:00
|
|
|
mode: SearchMode = SearchMode.hybrid
|
2025-02-16 21:11:05 +08:00
|
|
|
|
|
|
|
"""If True, enables streaming output for real-time responses."""
|
|
|
|
stream: Optional[bool] = None
|
|
|
|
|
|
|
|
"""If True, only returns the retrieved context without generating a response."""
|
|
|
|
only_need_context: Optional[bool] = None
|
|
|
|
|
|
|
|
"""If True, only returns the generated prompt without producing a response."""
|
|
|
|
only_need_prompt: Optional[bool] = None
|
|
|
|
|
|
|
|
"""Defines the response format. Examples: 'Multiple Paragraphs', 'Single Paragraph', 'Bullet Points'."""
|
|
|
|
response_type: Optional[str] = None
|
|
|
|
|
|
|
|
"""Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode."""
|
|
|
|
top_k: Optional[int] = None
|
|
|
|
|
|
|
|
"""Maximum number of tokens allowed for each retrieved text chunk."""
|
|
|
|
max_token_for_text_unit: Optional[int] = None
|
|
|
|
|
|
|
|
"""Maximum number of tokens allocated for relationship descriptions in global retrieval."""
|
|
|
|
max_token_for_global_context: Optional[int] = None
|
|
|
|
|
|
|
|
"""Maximum number of tokens allocated for entity descriptions in local retrieval."""
|
|
|
|
max_token_for_local_context: Optional[int] = None
|
|
|
|
|
|
|
|
"""List of high-level keywords to prioritize in retrieval."""
|
|
|
|
hl_keywords: Optional[List[str]] = None
|
|
|
|
|
|
|
|
"""List of low-level keywords to refine retrieval focus."""
|
|
|
|
ll_keywords: Optional[List[str]] = None
|
|
|
|
|
|
|
|
"""Stores past conversation history to maintain context.
|
|
|
|
Format: [{"role": "user/assistant", "content": "message"}].
|
|
|
|
"""
|
|
|
|
conversation_history: Optional[List[dict[str, Any]]] = None
|
|
|
|
|
|
|
|
"""Number of complete conversation turns (user-assistant pairs) to consider in the response context."""
|
|
|
|
history_turns: Optional[int] = None
|
2024-12-22 00:38:38 +01:00
|
|
|
|
|
|
|
|
|
|
|
class QueryResponse(BaseModel):
|
|
|
|
response: str
|
|
|
|
|
|
|
|
|
|
|
|
class InsertTextRequest(BaseModel):
|
|
|
|
text: str
|
|
|
|
|
|
|
|
|
|
|
|
class InsertResponse(BaseModel):
|
|
|
|
status: str
|
|
|
|
message: str
|
|
|
|
|
2025-01-04 02:23:39 +01:00
|
|
|
|
2025-02-16 21:11:05 +08:00
|
|
|
def QueryRequestToQueryParams(request: QueryRequest):
|
|
|
|
param = QueryParam(mode=request.mode, stream=request.stream)
|
|
|
|
if request.only_need_context is not None:
|
|
|
|
param.only_need_context = request.only_need_context
|
|
|
|
if request.only_need_prompt is not None:
|
|
|
|
param.only_need_prompt = request.only_need_prompt
|
|
|
|
if request.response_type is not None:
|
|
|
|
param.response_type = request.response_type
|
|
|
|
if request.top_k is not None:
|
|
|
|
param.top_k = request.top_k
|
|
|
|
if request.max_token_for_text_unit is not None:
|
|
|
|
param.max_token_for_text_unit = request.max_token_for_text_unit
|
|
|
|
if request.max_token_for_global_context is not None:
|
|
|
|
param.max_token_for_global_context = request.max_token_for_global_context
|
|
|
|
if request.max_token_for_local_context is not None:
|
|
|
|
param.max_token_for_local_context = request.max_token_for_local_context
|
|
|
|
if request.hl_keywords is not None:
|
|
|
|
param.hl_keywords = request.hl_keywords
|
|
|
|
if request.ll_keywords is not None:
|
|
|
|
param.ll_keywords = request.ll_keywords
|
|
|
|
if request.conversation_history is not None:
|
|
|
|
param.conversation_history = request.conversation_history
|
|
|
|
if request.history_turns is not None:
|
|
|
|
param.history_turns = request.history_turns
|
|
|
|
return param
|
|
|
|
|
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
def get_api_key_dependency(api_key: Optional[str]):
|
|
|
|
if not api_key:
|
|
|
|
# If no API key is configured, return a dummy dependency that always succeeds
|
|
|
|
async def no_auth():
|
|
|
|
return None
|
2025-01-04 02:23:39 +01:00
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
return no_auth
|
2025-01-04 02:23:39 +01:00
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
# If API key is configured, use proper authentication
|
|
|
|
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
|
2025-01-04 02:23:39 +01:00
|
|
|
|
2025-02-16 21:11:05 +08:00
|
|
|
async def api_key_auth(
|
|
|
|
api_key_header_value: Optional[str] = Security(api_key_header),
|
|
|
|
):
|
2025-01-04 02:21:37 +01:00
|
|
|
if not api_key_header_value:
|
|
|
|
raise HTTPException(
|
2025-01-04 02:23:39 +01:00
|
|
|
status_code=HTTP_403_FORBIDDEN, detail="API Key required"
|
2025-01-04 02:21:37 +01:00
|
|
|
)
|
|
|
|
if api_key_header_value != api_key:
|
|
|
|
raise HTTPException(
|
2025-01-04 02:23:39 +01:00
|
|
|
status_code=HTTP_403_FORBIDDEN, detail="Invalid API Key"
|
2025-01-04 02:21:37 +01:00
|
|
|
)
|
|
|
|
return api_key_header_value
|
2025-01-04 02:23:39 +01:00
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
return api_key_auth
|
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
|
2025-02-13 06:05:21 +08:00
|
|
|
# Global configuration
|
|
|
|
global_top_k = 60 # default value
|
2025-02-15 22:25:48 +08:00
|
|
|
temp_prefix = "__tmp_" # prefix for temporary files
|
2025-02-13 06:05:21 +08:00
|
|
|
|
2025-02-13 14:07:36 +08:00
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
def create_app(args):
|
2025-02-13 06:05:21 +08:00
|
|
|
global global_top_k
|
|
|
|
global_top_k = args.top_k # save top_k from args
|
2025-02-13 14:07:36 +08:00
|
|
|
|
2025-01-26 05:09:42 +08:00
|
|
|
# Verify that bindings are correctly setup
|
2025-01-24 17:10:19 +08:00
|
|
|
if args.llm_binding not in [
|
|
|
|
"lollms",
|
|
|
|
"ollama",
|
|
|
|
"openai",
|
|
|
|
"openai-ollama",
|
|
|
|
"azure_openai",
|
|
|
|
]:
|
2025-01-10 20:30:58 +01:00
|
|
|
raise Exception("llm binding not supported")
|
|
|
|
|
2025-01-23 21:30:57 +09:00
|
|
|
if args.embedding_binding not in ["lollms", "ollama", "openai", "azure_openai"]:
|
2025-01-10 20:30:58 +01:00
|
|
|
raise Exception("embedding binding not supported")
|
|
|
|
|
2025-01-26 05:09:42 +08:00
|
|
|
# Set default hosts if not provided
|
|
|
|
if args.llm_binding_host is None:
|
|
|
|
args.llm_binding_host = get_default_host(args.llm_binding)
|
2025-01-26 05:10:57 +08:00
|
|
|
|
2025-01-26 05:09:42 +08:00
|
|
|
if args.embedding_binding_host is None:
|
|
|
|
args.embedding_binding_host = get_default_host(args.embedding_binding)
|
|
|
|
|
2025-01-11 01:35:49 +01:00
|
|
|
# Add SSL validation
|
|
|
|
if args.ssl:
|
|
|
|
if not args.ssl_certfile or not args.ssl_keyfile:
|
2025-01-11 01:37:07 +01:00
|
|
|
raise Exception(
|
|
|
|
"SSL certificate and key files must be provided when SSL is enabled"
|
|
|
|
)
|
2025-01-11 01:35:49 +01:00
|
|
|
if not os.path.exists(args.ssl_certfile):
|
|
|
|
raise Exception(f"SSL certificate file not found: {args.ssl_certfile}")
|
|
|
|
if not os.path.exists(args.ssl_keyfile):
|
|
|
|
raise Exception(f"SSL key file not found: {args.ssl_keyfile}")
|
2025-01-11 01:37:07 +01:00
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
# Setup logging
|
|
|
|
logging.basicConfig(
|
|
|
|
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
|
|
|
|
)
|
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
# Check if API key is provided either through env var or args
|
|
|
|
api_key = os.getenv("LIGHTRAG_API_KEY") or args.key
|
2025-01-04 02:23:39 +01:00
|
|
|
|
2025-01-21 00:50:11 +08:00
|
|
|
# Initialize document manager
|
|
|
|
doc_manager = DocumentManager(args.input_dir)
|
|
|
|
|
|
|
|
@asynccontextmanager
|
|
|
|
async def lifespan(app: FastAPI):
|
|
|
|
"""Lifespan context manager for startup and shutdown events"""
|
2025-02-13 01:11:09 +08:00
|
|
|
# Initialize database connections
|
|
|
|
postgres_db = None
|
|
|
|
oracle_db = None
|
|
|
|
tidb_db = None
|
2025-02-14 01:12:39 +08:00
|
|
|
# Store background tasks
|
|
|
|
app.state.background_tasks = set()
|
2025-02-13 01:11:09 +08:00
|
|
|
|
|
|
|
try:
|
|
|
|
# Check if PostgreSQL is needed
|
|
|
|
if any(
|
|
|
|
isinstance(
|
|
|
|
storage_instance,
|
|
|
|
(PGKVStorage, PGVectorStorage, PGGraphStorage, PGDocStatusStorage),
|
2025-01-25 00:55:07 +01:00
|
|
|
)
|
2025-02-13 01:11:09 +08:00
|
|
|
for _, storage_instance in storage_instances
|
|
|
|
):
|
|
|
|
postgres_db = PostgreSQLDB(_get_postgres_config())
|
|
|
|
await postgres_db.initdb()
|
|
|
|
await postgres_db.check_tables()
|
|
|
|
for storage_name, storage_instance in storage_instances:
|
|
|
|
if isinstance(
|
|
|
|
storage_instance,
|
2025-02-13 04:12:00 +08:00
|
|
|
(
|
|
|
|
PGKVStorage,
|
|
|
|
PGVectorStorage,
|
|
|
|
PGGraphStorage,
|
|
|
|
PGDocStatusStorage,
|
|
|
|
),
|
2025-02-13 01:11:09 +08:00
|
|
|
):
|
|
|
|
storage_instance.db = postgres_db
|
|
|
|
logger.info(f"Injected postgres_db to {storage_name}")
|
|
|
|
|
|
|
|
# Check if Oracle is needed
|
|
|
|
if any(
|
|
|
|
isinstance(
|
|
|
|
storage_instance,
|
|
|
|
(OracleKVStorage, OracleVectorDBStorage, OracleGraphStorage),
|
|
|
|
)
|
|
|
|
for _, storage_instance in storage_instances
|
|
|
|
):
|
|
|
|
oracle_db = OracleDB(_get_oracle_config())
|
|
|
|
await oracle_db.check_tables()
|
|
|
|
for storage_name, storage_instance in storage_instances:
|
|
|
|
if isinstance(
|
|
|
|
storage_instance,
|
|
|
|
(OracleKVStorage, OracleVectorDBStorage, OracleGraphStorage),
|
|
|
|
):
|
|
|
|
storage_instance.db = oracle_db
|
|
|
|
logger.info(f"Injected oracle_db to {storage_name}")
|
|
|
|
|
|
|
|
# Check if TiDB is needed
|
|
|
|
if any(
|
|
|
|
isinstance(
|
|
|
|
storage_instance,
|
|
|
|
(TiDBKVStorage, TiDBVectorDBStorage, TiDBGraphStorage),
|
|
|
|
)
|
|
|
|
for _, storage_instance in storage_instances
|
|
|
|
):
|
|
|
|
tidb_db = TiDB(_get_tidb_config())
|
|
|
|
await tidb_db.check_tables()
|
|
|
|
for storage_name, storage_instance in storage_instances:
|
|
|
|
if isinstance(
|
|
|
|
storage_instance,
|
|
|
|
(TiDBKVStorage, TiDBVectorDBStorage, TiDBGraphStorage),
|
|
|
|
):
|
|
|
|
storage_instance.db = tidb_db
|
|
|
|
logger.info(f"Injected tidb_db to {storage_name}")
|
|
|
|
|
|
|
|
# Auto scan documents if enabled
|
|
|
|
if args.auto_scan_at_startup:
|
2025-02-14 01:12:39 +08:00
|
|
|
# Start scanning in background
|
|
|
|
with progress_lock:
|
|
|
|
if not scan_progress["is_scanning"]:
|
|
|
|
scan_progress["is_scanning"] = True
|
|
|
|
scan_progress["indexed_count"] = 0
|
|
|
|
scan_progress["progress"] = 0
|
|
|
|
# Create background task
|
|
|
|
task = asyncio.create_task(run_scanning_process())
|
|
|
|
app.state.background_tasks.add(task)
|
|
|
|
task.add_done_callback(app.state.background_tasks.discard)
|
2025-02-14 01:14:12 +08:00
|
|
|
ASCIIColors.info(
|
|
|
|
f"Started background scanning of documents from {args.input_dir}"
|
|
|
|
)
|
2025-02-14 01:12:39 +08:00
|
|
|
else:
|
2025-02-14 01:14:12 +08:00
|
|
|
ASCIIColors.info(
|
|
|
|
"Skip document scanning(anohter scanning is active)"
|
|
|
|
)
|
2025-02-13 01:11:09 +08:00
|
|
|
|
|
|
|
yield
|
|
|
|
|
|
|
|
finally:
|
|
|
|
# Cleanup database connections
|
|
|
|
if postgres_db and hasattr(postgres_db, "pool"):
|
|
|
|
await postgres_db.pool.close()
|
|
|
|
logger.info("Closed PostgreSQL connection pool")
|
2025-02-13 04:12:00 +08:00
|
|
|
|
2025-02-13 01:11:09 +08:00
|
|
|
if oracle_db and hasattr(oracle_db, "pool"):
|
|
|
|
await oracle_db.pool.close()
|
|
|
|
logger.info("Closed Oracle connection pool")
|
2025-02-13 04:12:00 +08:00
|
|
|
|
2025-02-13 01:11:09 +08:00
|
|
|
if tidb_db and hasattr(tidb_db, "pool"):
|
|
|
|
await tidb_db.pool.close()
|
|
|
|
logger.info("Closed TiDB connection pool")
|
2025-01-21 00:50:11 +08:00
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
# Initialize FastAPI
|
2024-12-22 00:38:38 +01:00
|
|
|
app = FastAPI(
|
|
|
|
title="LightRAG API",
|
2025-01-04 02:23:39 +01:00
|
|
|
description="API for querying text using LightRAG with separate storage and input directories"
|
|
|
|
+ "(With authentication)"
|
|
|
|
if api_key
|
|
|
|
else "",
|
2025-01-19 06:06:17 +08:00
|
|
|
version=__api_version__,
|
2025-01-04 02:23:39 +01:00
|
|
|
openapi_tags=[{"name": "api"}],
|
2025-01-21 01:03:37 +08:00
|
|
|
lifespan=lifespan,
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
2025-01-04 02:23:39 +01:00
|
|
|
|
2025-02-15 11:39:10 +08:00
|
|
|
def get_cors_origins():
|
|
|
|
"""Get allowed origins from environment variable
|
|
|
|
Returns a list of allowed origins, defaults to ["*"] if not set
|
|
|
|
"""
|
|
|
|
origins_str = os.getenv("CORS_ORIGINS", "*")
|
|
|
|
if origins_str == "*":
|
|
|
|
return ["*"]
|
|
|
|
return [origin.strip() for origin in origins_str.split(",")]
|
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
# Add CORS middleware
|
|
|
|
app.add_middleware(
|
|
|
|
CORSMiddleware,
|
2025-02-15 11:39:10 +08:00
|
|
|
allow_origins=get_cors_origins(),
|
2025-01-04 02:21:37 +01:00
|
|
|
allow_credentials=True,
|
|
|
|
allow_methods=["*"],
|
|
|
|
allow_headers=["*"],
|
|
|
|
)
|
|
|
|
|
2025-02-13 01:11:09 +08:00
|
|
|
# Database configuration functions
|
|
|
|
def _get_postgres_config():
|
|
|
|
return {
|
|
|
|
"host": os.environ.get(
|
|
|
|
"POSTGRES_HOST",
|
|
|
|
config.get("postgres", "host", fallback="localhost"),
|
|
|
|
),
|
|
|
|
"port": os.environ.get(
|
|
|
|
"POSTGRES_PORT", config.get("postgres", "port", fallback=5432)
|
|
|
|
),
|
|
|
|
"user": os.environ.get(
|
|
|
|
"POSTGRES_USER", config.get("postgres", "user", fallback=None)
|
|
|
|
),
|
|
|
|
"password": os.environ.get(
|
|
|
|
"POSTGRES_PASSWORD",
|
|
|
|
config.get("postgres", "password", fallback=None),
|
|
|
|
),
|
|
|
|
"database": os.environ.get(
|
|
|
|
"POSTGRES_DATABASE",
|
|
|
|
config.get("postgres", "database", fallback=None),
|
|
|
|
),
|
|
|
|
"workspace": os.environ.get(
|
|
|
|
"POSTGRES_WORKSPACE",
|
|
|
|
config.get("postgres", "workspace", fallback="default"),
|
|
|
|
),
|
|
|
|
}
|
|
|
|
|
|
|
|
def _get_oracle_config():
|
|
|
|
return {
|
|
|
|
"user": os.environ.get(
|
|
|
|
"ORACLE_USER",
|
|
|
|
config.get("oracle", "user", fallback=None),
|
|
|
|
),
|
|
|
|
"password": os.environ.get(
|
|
|
|
"ORACLE_PASSWORD",
|
|
|
|
config.get("oracle", "password", fallback=None),
|
|
|
|
),
|
|
|
|
"dsn": os.environ.get(
|
|
|
|
"ORACLE_DSN",
|
|
|
|
config.get("oracle", "dsn", fallback=None),
|
|
|
|
),
|
|
|
|
"config_dir": os.environ.get(
|
|
|
|
"ORACLE_CONFIG_DIR",
|
|
|
|
config.get("oracle", "config_dir", fallback=None),
|
|
|
|
),
|
|
|
|
"wallet_location": os.environ.get(
|
|
|
|
"ORACLE_WALLET_LOCATION",
|
|
|
|
config.get("oracle", "wallet_location", fallback=None),
|
|
|
|
),
|
|
|
|
"wallet_password": os.environ.get(
|
|
|
|
"ORACLE_WALLET_PASSWORD",
|
|
|
|
config.get("oracle", "wallet_password", fallback=None),
|
|
|
|
),
|
|
|
|
"workspace": os.environ.get(
|
|
|
|
"ORACLE_WORKSPACE",
|
|
|
|
config.get("oracle", "workspace", fallback="default"),
|
|
|
|
),
|
|
|
|
}
|
|
|
|
|
|
|
|
def _get_tidb_config():
|
|
|
|
return {
|
|
|
|
"host": os.environ.get(
|
|
|
|
"TIDB_HOST",
|
|
|
|
config.get("tidb", "host", fallback="localhost"),
|
|
|
|
),
|
|
|
|
"port": os.environ.get(
|
|
|
|
"TIDB_PORT", config.get("tidb", "port", fallback=4000)
|
|
|
|
),
|
|
|
|
"user": os.environ.get(
|
|
|
|
"TIDB_USER",
|
|
|
|
config.get("tidb", "user", fallback=None),
|
|
|
|
),
|
|
|
|
"password": os.environ.get(
|
|
|
|
"TIDB_PASSWORD",
|
|
|
|
config.get("tidb", "password", fallback=None),
|
|
|
|
),
|
|
|
|
"database": os.environ.get(
|
|
|
|
"TIDB_DATABASE",
|
|
|
|
config.get("tidb", "database", fallback=None),
|
|
|
|
),
|
|
|
|
"workspace": os.environ.get(
|
|
|
|
"TIDB_WORKSPACE",
|
|
|
|
config.get("tidb", "workspace", fallback="default"),
|
|
|
|
),
|
|
|
|
}
|
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
# Create the optional API key dependency
|
|
|
|
optional_api_key = get_api_key_dependency(api_key)
|
2024-12-22 00:38:38 +01:00
|
|
|
|
|
|
|
# Create working directory if it doesn't exist
|
|
|
|
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
|
2025-01-25 16:29:59 +08:00
|
|
|
if args.llm_binding == "lollms" or args.embedding_binding == "lollms":
|
2025-01-25 00:11:00 +01:00
|
|
|
from lightrag.llm.lollms import lollms_model_complete, lollms_embed
|
2025-01-25 16:29:59 +08:00
|
|
|
if args.llm_binding == "ollama" or args.embedding_binding == "ollama":
|
2025-01-25 00:11:00 +01:00
|
|
|
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
2025-01-25 16:29:59 +08:00
|
|
|
if args.llm_binding == "openai" or args.embedding_binding == "openai":
|
2025-01-25 00:11:00 +01:00
|
|
|
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
2025-01-25 16:57:47 +08:00
|
|
|
if args.llm_binding == "azure_openai" or args.embedding_binding == "azure_openai":
|
2025-01-25 00:11:00 +01:00
|
|
|
from lightrag.llm.azure_openai import (
|
|
|
|
azure_openai_complete_if_cache,
|
|
|
|
azure_openai_embed,
|
|
|
|
)
|
feat: Added webui management, including file upload, text upload, Q&A query, graph database management (can view tags, view knowledge graph based on tags), system status (whether it is good, data storage status, model status, path),request /webui/index.html
2025-01-25 18:38:46 +08:00
|
|
|
if args.llm_binding_host == "openai-ollama" or args.embedding_binding == "ollama":
|
2025-01-26 09:13:11 +08:00
|
|
|
from lightrag.llm.openai import openai_complete_if_cache
|
|
|
|
from lightrag.llm.ollama import ollama_embed
|
2024-12-22 00:38:38 +01:00
|
|
|
|
2025-01-19 04:44:30 +08:00
|
|
|
async def openai_alike_model_complete(
|
2025-01-19 08:07:26 +08:00
|
|
|
prompt,
|
|
|
|
system_prompt=None,
|
2025-02-06 14:46:07 +08:00
|
|
|
history_messages=None,
|
2025-01-19 08:07:26 +08:00
|
|
|
keyword_extraction=False,
|
|
|
|
**kwargs,
|
2025-01-19 04:44:30 +08:00
|
|
|
) -> str:
|
2025-02-06 15:56:18 +08:00
|
|
|
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
|
|
|
if keyword_extraction:
|
|
|
|
kwargs["response_format"] = GPTKeywordExtractionFormat
|
2025-02-06 14:46:07 +08:00
|
|
|
if history_messages is None:
|
|
|
|
history_messages = []
|
2025-01-19 04:44:30 +08:00
|
|
|
return await openai_complete_if_cache(
|
|
|
|
args.llm_model,
|
|
|
|
prompt,
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
history_messages=history_messages,
|
|
|
|
base_url=args.llm_binding_host,
|
2025-01-20 14:50:06 +08:00
|
|
|
api_key=args.llm_binding_api_key,
|
2025-01-19 04:44:30 +08:00
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
async def azure_openai_model_complete(
|
2025-01-19 08:07:26 +08:00
|
|
|
prompt,
|
|
|
|
system_prompt=None,
|
2025-02-06 14:46:07 +08:00
|
|
|
history_messages=None,
|
2025-01-19 08:07:26 +08:00
|
|
|
keyword_extraction=False,
|
|
|
|
**kwargs,
|
2025-01-19 04:44:30 +08:00
|
|
|
) -> str:
|
2025-02-06 15:56:18 +08:00
|
|
|
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
|
|
|
if keyword_extraction:
|
|
|
|
kwargs["response_format"] = GPTKeywordExtractionFormat
|
2025-02-06 14:46:07 +08:00
|
|
|
if history_messages is None:
|
|
|
|
history_messages = []
|
2025-01-19 04:44:30 +08:00
|
|
|
return await azure_openai_complete_if_cache(
|
|
|
|
args.llm_model,
|
|
|
|
prompt,
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
history_messages=history_messages,
|
|
|
|
base_url=args.llm_binding_host,
|
|
|
|
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
|
|
|
api_version=os.getenv("AZURE_OPENAI_API_VERSION", "2024-08-01-preview"),
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
2025-01-19 05:19:02 +08:00
|
|
|
embedding_func = EmbeddingFunc(
|
|
|
|
embedding_dim=args.embedding_dim,
|
|
|
|
max_token_size=args.max_embed_tokens,
|
|
|
|
func=lambda texts: lollms_embed(
|
|
|
|
texts,
|
|
|
|
embed_model=args.embedding_model,
|
|
|
|
host=args.embedding_binding_host,
|
2025-01-20 00:26:28 +01:00
|
|
|
api_key=args.embedding_binding_api_key,
|
2025-01-19 05:19:02 +08:00
|
|
|
)
|
|
|
|
if args.embedding_binding == "lollms"
|
|
|
|
else ollama_embed(
|
|
|
|
texts,
|
|
|
|
embed_model=args.embedding_model,
|
|
|
|
host=args.embedding_binding_host,
|
2025-01-20 00:26:28 +01:00
|
|
|
api_key=args.embedding_binding_api_key,
|
2025-01-19 05:19:02 +08:00
|
|
|
)
|
|
|
|
if args.embedding_binding == "ollama"
|
2025-01-25 00:11:00 +01:00
|
|
|
else azure_openai_embed(
|
2025-01-19 05:19:02 +08:00
|
|
|
texts,
|
2025-01-19 23:24:37 +01:00
|
|
|
model=args.embedding_model, # no host is used for openai,
|
2025-01-20 00:26:28 +01:00
|
|
|
api_key=args.embedding_binding_api_key,
|
2025-01-19 05:19:02 +08:00
|
|
|
)
|
|
|
|
if args.embedding_binding == "azure_openai"
|
2025-01-25 00:11:00 +01:00
|
|
|
else openai_embed(
|
2025-01-19 05:19:02 +08:00
|
|
|
texts,
|
2025-02-14 00:09:32 +01:00
|
|
|
model=args.embedding_model,
|
|
|
|
base_url=args.embedding_binding_host,
|
2025-01-20 00:26:28 +01:00
|
|
|
api_key=args.embedding_binding_api_key,
|
2025-01-19 05:19:02 +08:00
|
|
|
),
|
|
|
|
)
|
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
# Initialize RAG
|
2025-01-23 22:58:57 +08:00
|
|
|
if args.llm_binding in ["lollms", "ollama", "openai-ollama"]:
|
2025-01-19 04:44:30 +08:00
|
|
|
rag = LightRAG(
|
|
|
|
working_dir=args.working_dir,
|
|
|
|
llm_model_func=lollms_model_complete
|
2025-01-11 01:37:07 +01:00
|
|
|
if args.llm_binding == "lollms"
|
2025-01-23 22:58:57 +08:00
|
|
|
else ollama_model_complete
|
|
|
|
if args.llm_binding == "ollama"
|
|
|
|
else openai_alike_model_complete,
|
2025-01-19 04:44:30 +08:00
|
|
|
llm_model_name=args.llm_model,
|
|
|
|
llm_model_max_async=args.max_async,
|
|
|
|
llm_model_max_token_size=args.max_tokens,
|
2025-01-23 22:58:57 +08:00
|
|
|
chunk_token_size=int(args.chunk_size),
|
|
|
|
chunk_overlap_token_size=int(args.chunk_overlap_size),
|
2025-01-19 04:44:30 +08:00
|
|
|
llm_model_kwargs={
|
|
|
|
"host": args.llm_binding_host,
|
|
|
|
"timeout": args.timeout,
|
|
|
|
"options": {"num_ctx": args.max_tokens},
|
2025-01-20 00:26:28 +01:00
|
|
|
"api_key": args.llm_binding_api_key,
|
2025-01-23 22:58:57 +08:00
|
|
|
}
|
|
|
|
if args.llm_binding == "lollms" or args.llm_binding == "ollama"
|
|
|
|
else {},
|
2025-01-19 05:19:02 +08:00
|
|
|
embedding_func=embedding_func,
|
2025-02-13 04:04:51 +08:00
|
|
|
kv_storage=args.kv_storage,
|
|
|
|
graph_storage=args.graph_storage,
|
|
|
|
vector_storage=args.vector_storage,
|
|
|
|
doc_status_storage=args.doc_status_storage,
|
2025-01-29 21:34:34 +08:00
|
|
|
vector_db_storage_cls_kwargs={
|
|
|
|
"cosine_better_than_threshold": args.cosine_threshold
|
|
|
|
},
|
2025-02-02 07:29:01 +08:00
|
|
|
enable_llm_cache_for_entity_extract=False, # set to True for debuging to reduce llm fee
|
2025-02-02 04:27:21 +08:00
|
|
|
embedding_cache_config={
|
|
|
|
"enabled": True,
|
|
|
|
"similarity_threshold": 0.95,
|
|
|
|
"use_llm_check": False,
|
|
|
|
},
|
2025-02-07 23:04:29 +08:00
|
|
|
log_level=args.log_level,
|
|
|
|
namespace_prefix=args.namespace_prefix,
|
2025-01-19 08:07:26 +08:00
|
|
|
)
|
|
|
|
else:
|
2025-01-19 04:44:30 +08:00
|
|
|
rag = LightRAG(
|
|
|
|
working_dir=args.working_dir,
|
|
|
|
llm_model_func=azure_openai_model_complete
|
2025-01-11 01:37:07 +01:00
|
|
|
if args.llm_binding == "azure_openai"
|
2025-01-19 04:44:30 +08:00
|
|
|
else openai_alike_model_complete,
|
2025-01-23 22:58:57 +08:00
|
|
|
chunk_token_size=int(args.chunk_size),
|
|
|
|
chunk_overlap_token_size=int(args.chunk_overlap_size),
|
2025-01-29 21:35:46 +08:00
|
|
|
llm_model_kwargs={
|
|
|
|
"timeout": args.timeout,
|
|
|
|
},
|
2025-01-23 01:15:48 +08:00
|
|
|
llm_model_name=args.llm_model,
|
|
|
|
llm_model_max_async=args.max_async,
|
|
|
|
llm_model_max_token_size=args.max_tokens,
|
2025-01-19 05:19:02 +08:00
|
|
|
embedding_func=embedding_func,
|
2025-02-13 04:04:51 +08:00
|
|
|
kv_storage=args.kv_storage,
|
|
|
|
graph_storage=args.graph_storage,
|
|
|
|
vector_storage=args.vector_storage,
|
|
|
|
doc_status_storage=args.doc_status_storage,
|
2025-01-29 21:34:34 +08:00
|
|
|
vector_db_storage_cls_kwargs={
|
|
|
|
"cosine_better_than_threshold": args.cosine_threshold
|
|
|
|
},
|
2025-02-02 07:29:01 +08:00
|
|
|
enable_llm_cache_for_entity_extract=False, # set to True for debuging to reduce llm fee
|
2025-02-02 04:27:21 +08:00
|
|
|
embedding_cache_config={
|
|
|
|
"enabled": True,
|
|
|
|
"similarity_threshold": 0.95,
|
|
|
|
"use_llm_check": False,
|
|
|
|
},
|
2025-02-07 23:04:29 +08:00
|
|
|
log_level=args.log_level,
|
|
|
|
namespace_prefix=args.namespace_prefix,
|
2025-01-19 04:44:30 +08:00
|
|
|
)
|
2024-12-22 00:38:38 +01:00
|
|
|
|
2025-02-13 01:11:09 +08:00
|
|
|
# Collect all storage instances
|
|
|
|
storage_instances = [
|
|
|
|
("full_docs", rag.full_docs),
|
|
|
|
("text_chunks", rag.text_chunks),
|
|
|
|
("chunk_entity_relation_graph", rag.chunk_entity_relation_graph),
|
|
|
|
("entities_vdb", rag.entities_vdb),
|
|
|
|
("relationships_vdb", rag.relationships_vdb),
|
|
|
|
("chunks_vdb", rag.chunks_vdb),
|
|
|
|
("doc_status", rag.doc_status),
|
2025-02-13 01:30:21 +08:00
|
|
|
("llm_response_cache", rag.llm_response_cache),
|
2025-02-13 01:11:09 +08:00
|
|
|
]
|
|
|
|
|
2025-02-16 21:11:05 +08:00
|
|
|
async def pipeline_enqueue_file(file_path: Path) -> bool:
|
|
|
|
"""Add a file to the queue for processing
|
2025-01-14 23:11:23 +01:00
|
|
|
|
2025-01-14 23:08:39 +01:00
|
|
|
Args:
|
2025-02-15 22:25:48 +08:00
|
|
|
file_path: Path to the saved file
|
2025-02-16 21:11:05 +08:00
|
|
|
Returns:
|
|
|
|
bool: True if the file was successfully enqueued, False otherwise
|
2025-01-14 23:08:39 +01:00
|
|
|
"""
|
2025-02-15 22:25:48 +08:00
|
|
|
try:
|
|
|
|
content = ""
|
|
|
|
ext = file_path.suffix.lower()
|
2025-02-01 01:15:06 +01:00
|
|
|
|
2025-02-15 22:25:48 +08:00
|
|
|
file = None
|
|
|
|
async with aiofiles.open(file_path, "rb") as f:
|
|
|
|
file = await f.read()
|
2025-02-14 02:32:33 +08:00
|
|
|
|
2025-02-15 22:25:48 +08:00
|
|
|
# Process based on file type
|
|
|
|
match ext:
|
|
|
|
case ".txt" | ".md":
|
|
|
|
content = file.decode("utf-8")
|
|
|
|
case ".pdf":
|
|
|
|
if not pm.is_installed("pypdf2"):
|
|
|
|
pm.install("pypdf2")
|
|
|
|
from PyPDF2 import PdfReader
|
|
|
|
from io import BytesIO
|
|
|
|
|
|
|
|
pdf_file = BytesIO(file)
|
|
|
|
reader = PdfReader(pdf_file)
|
|
|
|
for page in reader.pages:
|
|
|
|
content += page.extract_text() + "\n"
|
|
|
|
case ".docx":
|
|
|
|
if not pm.is_installed("docx"):
|
|
|
|
pm.install("docx")
|
|
|
|
from docx import Document
|
|
|
|
from io import BytesIO
|
|
|
|
|
|
|
|
docx_content = await file.read()
|
|
|
|
docx_file = BytesIO(docx_content)
|
|
|
|
doc = Document(docx_file)
|
|
|
|
content = "\n".join(
|
|
|
|
[paragraph.text for paragraph in doc.paragraphs]
|
|
|
|
)
|
|
|
|
case ".pptx":
|
|
|
|
if not pm.is_installed("pptx"):
|
|
|
|
pm.install("pptx")
|
|
|
|
from pptx import Presentation # type: ignore
|
|
|
|
from io import BytesIO
|
|
|
|
|
|
|
|
pptx_content = await file.read()
|
|
|
|
pptx_file = BytesIO(pptx_content)
|
|
|
|
prs = Presentation(pptx_file)
|
|
|
|
for slide in prs.slides:
|
|
|
|
for shape in slide.shapes:
|
|
|
|
if hasattr(shape, "text"):
|
|
|
|
content += shape.text + "\n"
|
|
|
|
case _:
|
|
|
|
logging.error(
|
|
|
|
f"Unsupported file type: {file_path.name} (extension {ext})"
|
|
|
|
)
|
2025-02-16 21:11:05 +08:00
|
|
|
return False
|
2025-02-15 22:25:48 +08:00
|
|
|
|
2025-02-16 21:11:05 +08:00
|
|
|
# Insert into the RAG queue
|
2025-02-15 22:25:48 +08:00
|
|
|
if content:
|
2025-02-16 21:11:05 +08:00
|
|
|
await rag.apipeline_enqueue_documents(content)
|
2025-02-15 22:25:48 +08:00
|
|
|
logging.info(
|
2025-02-16 21:11:05 +08:00
|
|
|
f"Successfully processed and enqueued file: {file_path.name}"
|
2025-02-15 22:25:48 +08:00
|
|
|
)
|
2025-02-16 21:11:05 +08:00
|
|
|
return True
|
2025-02-15 22:25:48 +08:00
|
|
|
else:
|
|
|
|
logging.error(
|
|
|
|
f"No content could be extracted from file: {file_path.name}"
|
|
|
|
)
|
2025-02-14 02:32:33 +08:00
|
|
|
|
2025-02-15 22:25:48 +08:00
|
|
|
except Exception as e:
|
2025-02-16 21:11:05 +08:00
|
|
|
logging.error(
|
|
|
|
f"Error processing or enqueueing file {file_path.name}: {str(e)}"
|
|
|
|
)
|
2025-02-15 22:25:48 +08:00
|
|
|
logging.error(traceback.format_exc())
|
|
|
|
finally:
|
|
|
|
if file_path.name.startswith(temp_prefix):
|
|
|
|
# Clean up the temporary file after indexing
|
|
|
|
try:
|
|
|
|
file_path.unlink()
|
|
|
|
except Exception as e:
|
|
|
|
logging.error(f"Error deleting file {file_path}: {str(e)}")
|
2025-02-16 21:11:05 +08:00
|
|
|
return False
|
|
|
|
|
|
|
|
async def pipeline_index_file(file_path: Path):
|
|
|
|
"""Index a file
|
2025-01-14 23:11:23 +01:00
|
|
|
|
2025-02-16 21:11:05 +08:00
|
|
|
Args:
|
|
|
|
file_path: Path to the saved file
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
if await pipeline_enqueue_file(file_path):
|
|
|
|
await rag.apipeline_process_enqueue_documents()
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
logging.error(f"Error indexing file {file_path.name}: {str(e)}")
|
|
|
|
logging.error(traceback.format_exc())
|
|
|
|
|
|
|
|
async def pipeline_index_files(file_paths: List[Path]):
|
2025-02-16 01:10:43 +08:00
|
|
|
"""Index multiple files concurrently
|
2025-01-14 23:08:39 +01:00
|
|
|
|
2025-02-15 22:25:48 +08:00
|
|
|
Args:
|
|
|
|
file_paths: Paths to the files to index
|
|
|
|
"""
|
2025-02-16 01:10:43 +08:00
|
|
|
if not file_paths:
|
|
|
|
return
|
2025-02-16 21:11:05 +08:00
|
|
|
try:
|
|
|
|
enqueued = False
|
|
|
|
|
|
|
|
if len(file_paths) == 1:
|
|
|
|
enqueued = await pipeline_enqueue_file(file_paths[0])
|
|
|
|
else:
|
|
|
|
tasks = [pipeline_enqueue_file(path) for path in file_paths]
|
|
|
|
enqueued = any(await asyncio.gather(*tasks))
|
|
|
|
|
|
|
|
if enqueued:
|
|
|
|
await rag.apipeline_process_enqueue_documents()
|
|
|
|
except Exception as e:
|
|
|
|
logging.error(f"Error indexing files: {str(e)}")
|
|
|
|
logging.error(traceback.format_exc())
|
|
|
|
|
|
|
|
async def pipeline_index_texts(texts: List[str]):
|
|
|
|
"""Index a list of texts
|
|
|
|
|
|
|
|
Args:
|
|
|
|
texts: The texts to index
|
|
|
|
"""
|
|
|
|
if not texts:
|
|
|
|
return
|
|
|
|
await rag.apipeline_enqueue_documents(texts)
|
|
|
|
await rag.apipeline_process_enqueue_documents()
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-02-15 22:25:48 +08:00
|
|
|
async def save_temp_file(file: UploadFile = File(...)) -> Path:
|
|
|
|
"""Save the uploaded file to a temporary location
|
2025-01-31 23:35:42 +08:00
|
|
|
|
2025-02-15 22:25:48 +08:00
|
|
|
Args:
|
|
|
|
file: The uploaded file
|
2025-01-31 23:35:42 +08:00
|
|
|
|
2025-02-15 22:25:48 +08:00
|
|
|
Returns:
|
|
|
|
Path: The path to the saved file
|
|
|
|
"""
|
|
|
|
# Generate unique filename to avoid conflicts
|
|
|
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
|
|
unique_filename = f"{temp_prefix}{timestamp}_{file.filename}"
|
2025-01-31 23:35:42 +08:00
|
|
|
|
2025-02-15 22:25:48 +08:00
|
|
|
# Create a temporary file to save the uploaded content
|
|
|
|
temp_path = doc_manager.input_dir / "temp" / unique_filename
|
|
|
|
temp_path.parent.mkdir(exist_ok=True)
|
2025-01-31 23:35:42 +08:00
|
|
|
|
2025-02-15 22:25:48 +08:00
|
|
|
# Save the file
|
|
|
|
with open(temp_path, "wb") as buffer:
|
|
|
|
shutil.copyfileobj(file.file, buffer)
|
|
|
|
return temp_path
|
2025-01-31 23:35:42 +08:00
|
|
|
|
2025-01-31 11:19:12 +01:00
|
|
|
async def run_scanning_process():
|
|
|
|
"""Background task to scan and index documents"""
|
|
|
|
global scan_progress
|
2025-01-31 23:35:42 +08:00
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
try:
|
2025-01-30 23:27:43 +01:00
|
|
|
new_files = doc_manager.scan_directory_for_new_files()
|
|
|
|
scan_progress["total_files"] = len(new_files)
|
2025-01-31 23:35:42 +08:00
|
|
|
|
2025-02-14 12:50:43 +08:00
|
|
|
logger.info(f"Found {len(new_files)} new files to index.")
|
2024-12-22 00:38:38 +01:00
|
|
|
for file_path in new_files:
|
|
|
|
try:
|
2025-01-30 23:27:43 +01:00
|
|
|
with progress_lock:
|
|
|
|
scan_progress["current_file"] = os.path.basename(file_path)
|
2025-01-31 23:35:42 +08:00
|
|
|
|
2025-02-16 21:11:05 +08:00
|
|
|
await pipeline_index_file(file_path)
|
2025-01-31 23:35:42 +08:00
|
|
|
|
2025-01-30 23:27:43 +01:00
|
|
|
with progress_lock:
|
|
|
|
scan_progress["indexed_count"] += 1
|
2025-01-30 23:29:21 +01:00
|
|
|
scan_progress["progress"] = (
|
|
|
|
scan_progress["indexed_count"]
|
|
|
|
/ scan_progress["total_files"]
|
|
|
|
) * 100
|
2025-01-31 23:35:42 +08:00
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
except Exception as e:
|
|
|
|
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
2025-01-31 23:35:42 +08:00
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
except Exception as e:
|
2025-01-31 11:19:12 +01:00
|
|
|
logging.error(f"Error during scanning process: {str(e)}")
|
2025-01-30 23:27:43 +01:00
|
|
|
finally:
|
|
|
|
with progress_lock:
|
|
|
|
scan_progress["is_scanning"] = False
|
|
|
|
|
2025-02-15 22:25:48 +08:00
|
|
|
@app.post("/documents/scan", dependencies=[Depends(optional_api_key)])
|
|
|
|
async def scan_for_new_documents(background_tasks: BackgroundTasks):
|
|
|
|
"""Trigger the scanning process"""
|
|
|
|
global scan_progress
|
|
|
|
|
|
|
|
with progress_lock:
|
|
|
|
if scan_progress["is_scanning"]:
|
|
|
|
return {"status": "already_scanning"}
|
|
|
|
|
|
|
|
scan_progress["is_scanning"] = True
|
|
|
|
scan_progress["indexed_count"] = 0
|
|
|
|
scan_progress["progress"] = 0
|
|
|
|
|
|
|
|
# Start the scanning process in the background
|
|
|
|
background_tasks.add_task(run_scanning_process)
|
|
|
|
|
|
|
|
return {"status": "scanning_started"}
|
|
|
|
|
2025-01-30 23:27:43 +01:00
|
|
|
@app.get("/documents/scan-progress")
|
|
|
|
async def get_scan_progress():
|
|
|
|
"""Get the current scanning progress"""
|
|
|
|
with progress_lock:
|
|
|
|
return scan_progress
|
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
@app.post("/documents/upload", dependencies=[Depends(optional_api_key)])
|
2025-02-15 22:25:48 +08:00
|
|
|
async def upload_to_input_dir(
|
|
|
|
background_tasks: BackgroundTasks, file: UploadFile = File(...)
|
|
|
|
):
|
2025-01-24 13:37:43 +01:00
|
|
|
"""
|
|
|
|
Endpoint for uploading a file to the input directory and indexing it.
|
2025-01-24 21:01:34 +01:00
|
|
|
|
|
|
|
This API endpoint accepts a file through an HTTP POST request, checks if the
|
2025-01-24 13:37:43 +01:00
|
|
|
uploaded file is of a supported type, saves it in the specified input directory,
|
|
|
|
indexes it for retrieval, and returns a success status with relevant details.
|
2025-01-24 21:01:34 +01:00
|
|
|
|
2025-01-24 13:37:43 +01:00
|
|
|
Parameters:
|
2025-02-15 22:25:48 +08:00
|
|
|
background_tasks: FastAPI BackgroundTasks for async processing
|
2025-01-24 13:37:43 +01:00
|
|
|
file (UploadFile): The file to be uploaded. It must have an allowed extension as per
|
|
|
|
`doc_manager.supported_extensions`.
|
2025-01-24 21:01:34 +01:00
|
|
|
|
2025-01-24 13:37:43 +01:00
|
|
|
Returns:
|
2025-01-24 21:01:34 +01:00
|
|
|
dict: A dictionary containing the upload status ("success"),
|
|
|
|
a message detailing the operation result, and
|
2025-01-24 13:37:43 +01:00
|
|
|
the total number of indexed documents.
|
2025-01-24 21:01:34 +01:00
|
|
|
|
2025-01-24 13:37:43 +01:00
|
|
|
Raises:
|
|
|
|
HTTPException: If the file type is not supported, it raises a 400 Bad Request error.
|
|
|
|
If any other exception occurs during the file handling or indexing,
|
|
|
|
it raises a 500 Internal Server Error with details about the exception.
|
2025-01-24 21:01:34 +01:00
|
|
|
"""
|
2024-12-22 00:38:38 +01:00
|
|
|
try:
|
|
|
|
if not doc_manager.is_supported_file(file.filename):
|
|
|
|
raise HTTPException(
|
|
|
|
status_code=400,
|
|
|
|
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
|
|
|
)
|
|
|
|
|
|
|
|
file_path = doc_manager.input_dir / file.filename
|
|
|
|
with open(file_path, "wb") as buffer:
|
|
|
|
shutil.copyfileobj(file.file, buffer)
|
|
|
|
|
2025-02-15 22:25:48 +08:00
|
|
|
# Add to background tasks
|
2025-02-16 21:11:05 +08:00
|
|
|
background_tasks.add_task(pipeline_index_file, file_path)
|
2025-01-19 04:44:30 +08:00
|
|
|
|
2025-02-15 22:25:48 +08:00
|
|
|
return InsertResponse(
|
|
|
|
status="success",
|
|
|
|
message=f"File '{file.filename}' uploaded successfully. Processing will continue in background.",
|
2025-01-19 04:44:30 +08:00
|
|
|
)
|
2024-12-22 00:38:38 +01:00
|
|
|
except Exception as e:
|
2025-02-15 22:25:48 +08:00
|
|
|
logging.error(f"Error /documents/upload: {file.filename}: {str(e)}")
|
|
|
|
logging.error(traceback.format_exc())
|
2024-12-22 00:38:38 +01:00
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
2025-01-04 02:23:39 +01:00
|
|
|
@app.post(
|
|
|
|
"/documents/text",
|
|
|
|
response_model=InsertResponse,
|
|
|
|
dependencies=[Depends(optional_api_key)],
|
|
|
|
)
|
2025-02-15 22:25:48 +08:00
|
|
|
async def insert_text(
|
|
|
|
request: InsertTextRequest, background_tasks: BackgroundTasks
|
|
|
|
):
|
2025-01-24 13:37:43 +01:00
|
|
|
"""
|
|
|
|
Insert text into the Retrieval-Augmented Generation (RAG) system.
|
|
|
|
|
|
|
|
This endpoint allows you to insert text data into the RAG system for later retrieval and use in generating responses.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
request (InsertTextRequest): The request body containing the text to be inserted.
|
2025-02-15 22:25:48 +08:00
|
|
|
background_tasks: FastAPI BackgroundTasks for async processing
|
2025-01-24 13:37:43 +01:00
|
|
|
|
|
|
|
Returns:
|
|
|
|
InsertResponse: A response object containing the status of the operation, a message, and the number of documents inserted.
|
2025-01-24 21:01:34 +01:00
|
|
|
"""
|
2024-12-22 00:38:38 +01:00
|
|
|
try:
|
2025-02-16 21:11:05 +08:00
|
|
|
background_tasks.add_task(pipeline_index_texts, [request.text])
|
2024-12-22 00:38:38 +01:00
|
|
|
return InsertResponse(
|
|
|
|
status="success",
|
2025-02-15 22:25:48 +08:00
|
|
|
message="Text successfully received. Processing will continue in background.",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
except Exception as e:
|
2025-02-15 22:25:48 +08:00
|
|
|
logging.error(f"Error /documents/text: {str(e)}")
|
|
|
|
logging.error(traceback.format_exc())
|
2024-12-22 00:38:38 +01:00
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
2025-01-14 23:11:23 +01:00
|
|
|
|
2025-02-16 19:07:06 +01:00
|
|
|
@app.post(
|
|
|
|
"/documents/texts",
|
|
|
|
response_model=InsertResponse,
|
|
|
|
dependencies=[Depends(optional_api_key)],
|
|
|
|
)
|
|
|
|
async def insert_texts(
|
|
|
|
request: InsertTextsRequest, background_tasks: BackgroundTasks
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Insert texts into the Retrieval-Augmented Generation (RAG) system.
|
|
|
|
|
|
|
|
This endpoint allows you to insert text data into the RAG system for later retrieval and use in generating responses.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
request (InsertTextsRequest): The request body containing the text to be inserted.
|
|
|
|
background_tasks: FastAPI BackgroundTasks for async processing
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
InsertResponse: A response object containing the status of the operation, a message, and the number of documents inserted.
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
background_tasks.add_task(pipeline_index_texts, request.texts)
|
|
|
|
return InsertResponse(
|
|
|
|
status="success",
|
|
|
|
message="Text successfully received. Processing will continue in background.",
|
|
|
|
)
|
|
|
|
except Exception as e:
|
|
|
|
logging.error(f"Error /documents/text: {str(e)}")
|
|
|
|
logging.error(traceback.format_exc())
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
2025-01-04 02:23:39 +01:00
|
|
|
@app.post(
|
|
|
|
"/documents/file",
|
|
|
|
response_model=InsertResponse,
|
|
|
|
dependencies=[Depends(optional_api_key)],
|
|
|
|
)
|
2025-02-15 22:25:48 +08:00
|
|
|
async def insert_file(
|
2025-02-16 21:11:05 +08:00
|
|
|
background_tasks: BackgroundTasks, file: UploadFile = File(...)
|
2025-02-15 22:25:48 +08:00
|
|
|
):
|
2025-01-14 23:08:39 +01:00
|
|
|
"""Insert a file directly into the RAG system
|
2025-01-14 23:11:23 +01:00
|
|
|
|
2025-01-14 23:08:39 +01:00
|
|
|
Args:
|
2025-02-15 22:25:48 +08:00
|
|
|
background_tasks: FastAPI BackgroundTasks for async processing
|
2025-01-14 23:08:39 +01:00
|
|
|
file: Uploaded file
|
2025-01-14 23:11:23 +01:00
|
|
|
|
2025-01-14 23:08:39 +01:00
|
|
|
Returns:
|
|
|
|
InsertResponse: Status of the insertion operation
|
2025-01-14 23:11:23 +01:00
|
|
|
|
2025-01-14 23:08:39 +01:00
|
|
|
Raises:
|
|
|
|
HTTPException: For unsupported file types or processing errors
|
|
|
|
"""
|
2024-12-22 00:38:38 +01:00
|
|
|
try:
|
2025-02-15 22:25:48 +08:00
|
|
|
if not doc_manager.is_supported_file(file.filename):
|
2024-12-22 00:38:38 +01:00
|
|
|
raise HTTPException(
|
|
|
|
status_code=400,
|
2025-02-15 22:25:48 +08:00
|
|
|
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
|
2025-02-15 22:25:48 +08:00
|
|
|
# Create a temporary file to save the uploaded content
|
|
|
|
temp_path = save_temp_file(file)
|
|
|
|
|
|
|
|
# Add to background tasks
|
2025-02-16 21:11:05 +08:00
|
|
|
background_tasks.add_task(pipeline_index_file, temp_path)
|
2025-02-15 22:25:48 +08:00
|
|
|
|
|
|
|
return InsertResponse(
|
|
|
|
status="success",
|
|
|
|
message=f"File '{file.filename}' saved successfully. Processing will continue in background.",
|
|
|
|
)
|
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
except Exception as e:
|
2025-02-15 22:25:48 +08:00
|
|
|
logging.error(f"Error /documents/file: {str(e)}")
|
|
|
|
logging.error(traceback.format_exc())
|
2024-12-22 00:38:38 +01:00
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
2025-01-14 23:11:23 +01:00
|
|
|
|
2025-01-04 02:23:39 +01:00
|
|
|
@app.post(
|
2025-02-16 19:07:06 +01:00
|
|
|
"/documents/file_batch",
|
2025-01-04 02:23:39 +01:00
|
|
|
response_model=InsertResponse,
|
|
|
|
dependencies=[Depends(optional_api_key)],
|
|
|
|
)
|
2025-02-15 22:25:48 +08:00
|
|
|
async def insert_batch(
|
|
|
|
background_tasks: BackgroundTasks, files: List[UploadFile] = File(...)
|
|
|
|
):
|
2025-01-14 23:08:39 +01:00
|
|
|
"""Process multiple files in batch mode
|
2025-01-14 23:11:23 +01:00
|
|
|
|
2025-01-14 23:08:39 +01:00
|
|
|
Args:
|
2025-02-15 22:25:48 +08:00
|
|
|
background_tasks: FastAPI BackgroundTasks for async processing
|
2025-01-14 23:08:39 +01:00
|
|
|
files: List of files to process
|
2025-01-14 23:11:23 +01:00
|
|
|
|
2025-01-14 23:08:39 +01:00
|
|
|
Returns:
|
|
|
|
InsertResponse: Status of the batch insertion operation
|
2025-01-14 23:11:23 +01:00
|
|
|
|
2025-01-14 23:08:39 +01:00
|
|
|
Raises:
|
|
|
|
HTTPException: For processing errors
|
|
|
|
"""
|
2024-12-22 00:38:38 +01:00
|
|
|
try:
|
|
|
|
inserted_count = 0
|
|
|
|
failed_files = []
|
2025-02-15 22:25:48 +08:00
|
|
|
temp_files = []
|
2024-12-22 00:38:38 +01:00
|
|
|
|
|
|
|
for file in files:
|
2025-02-15 22:25:48 +08:00
|
|
|
if doc_manager.is_supported_file(file.filename):
|
|
|
|
# Create a temporary file to save the uploaded content
|
|
|
|
temp_files.append(save_temp_file(file))
|
|
|
|
inserted_count += 1
|
|
|
|
else:
|
|
|
|
failed_files.append(f"{file.filename} (unsupported type)")
|
2025-01-14 23:08:39 +01:00
|
|
|
|
2025-02-15 22:25:48 +08:00
|
|
|
if temp_files:
|
2025-02-16 21:11:05 +08:00
|
|
|
background_tasks.add_task(pipeline_index_files, temp_files)
|
2025-01-14 23:08:39 +01:00
|
|
|
|
|
|
|
# Prepare status message
|
|
|
|
if inserted_count == len(files):
|
|
|
|
status = "success"
|
|
|
|
status_message = f"Successfully inserted all {inserted_count} documents"
|
|
|
|
elif inserted_count > 0:
|
|
|
|
status = "partial_success"
|
|
|
|
status_message = f"Successfully inserted {inserted_count} out of {len(files)} documents"
|
|
|
|
if failed_files:
|
|
|
|
status_message += f". Failed files: {', '.join(failed_files)}"
|
|
|
|
else:
|
|
|
|
status = "failure"
|
|
|
|
status_message = "No documents were successfully inserted"
|
|
|
|
if failed_files:
|
|
|
|
status_message += f". Failed files: {', '.join(failed_files)}"
|
2024-12-22 00:38:38 +01:00
|
|
|
|
2025-02-15 22:25:48 +08:00
|
|
|
return InsertResponse(status=status, message=status_message)
|
2025-01-14 23:08:39 +01:00
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
except Exception as e:
|
2025-02-15 22:25:48 +08:00
|
|
|
logging.error(f"Error /documents/batch: {file.filename}: {str(e)}")
|
|
|
|
logging.error(traceback.format_exc())
|
2024-12-22 00:38:38 +01:00
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
2025-01-04 02:23:39 +01:00
|
|
|
@app.delete(
|
|
|
|
"/documents",
|
|
|
|
response_model=InsertResponse,
|
|
|
|
dependencies=[Depends(optional_api_key)],
|
|
|
|
)
|
2024-12-22 00:38:38 +01:00
|
|
|
async def clear_documents():
|
2025-01-24 13:37:43 +01:00
|
|
|
"""
|
|
|
|
Clear all documents from the LightRAG system.
|
|
|
|
|
|
|
|
This endpoint deletes all text chunks, entities vector database, and relationships vector database,
|
|
|
|
effectively clearing all documents from the LightRAG system.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
InsertResponse: A response object containing the status, message, and the new document count (0 in this case).
|
|
|
|
"""
|
2024-12-22 00:38:38 +01:00
|
|
|
try:
|
|
|
|
rag.text_chunks = []
|
|
|
|
rag.entities_vdb = None
|
|
|
|
rag.relationships_vdb = None
|
|
|
|
return InsertResponse(
|
2025-02-15 22:25:48 +08:00
|
|
|
status="success", message="All documents cleared successfully"
|
|
|
|
)
|
|
|
|
except Exception as e:
|
|
|
|
logging.error(f"Error DELETE /documents: {str(e)}")
|
|
|
|
logging.error(traceback.format_exc())
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
@app.post(
|
2025-02-16 19:07:06 +01:00
|
|
|
"/query",
|
|
|
|
response_model=QueryResponse,
|
|
|
|
dependencies=[Depends(optional_api_key)]
|
2025-02-15 22:25:48 +08:00
|
|
|
)
|
|
|
|
async def query_text(request: QueryRequest):
|
|
|
|
"""
|
|
|
|
Handle a POST request at the /query endpoint to process user queries using RAG capabilities.
|
|
|
|
|
|
|
|
Parameters:
|
2025-02-16 21:11:05 +08:00
|
|
|
request (QueryRequest): The request object containing the query parameters.
|
2025-02-15 22:25:48 +08:00
|
|
|
Returns:
|
|
|
|
QueryResponse: A Pydantic model containing the result of the query processing.
|
|
|
|
If a string is returned (e.g., cache hit), it's directly returned.
|
|
|
|
Otherwise, an async generator may be used to build the response.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
HTTPException: Raised when an error occurs during the request handling process,
|
|
|
|
with status code 500 and detail containing the exception message.
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
response = await rag.aquery(
|
2025-02-16 21:11:05 +08:00
|
|
|
request.query, param=QueryRequestToQueryParams(request)
|
2025-02-15 22:25:48 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
# If response is a string (e.g. cache hit), return directly
|
|
|
|
if isinstance(response, str):
|
|
|
|
return QueryResponse(response=response)
|
|
|
|
|
2025-02-16 19:07:06 +01:00
|
|
|
if isinstance(response, dict):
|
2025-02-16 21:11:05 +08:00
|
|
|
result = json.dumps(response, indent=2)
|
2025-02-15 22:25:48 +08:00
|
|
|
return QueryResponse(response=result)
|
2025-02-16 21:11:05 +08:00
|
|
|
else:
|
|
|
|
return QueryResponse(response=str(response))
|
2025-02-15 22:25:48 +08:00
|
|
|
except Exception as e:
|
|
|
|
trace_exception(e)
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
@app.post("/query/stream", dependencies=[Depends(optional_api_key)])
|
|
|
|
async def query_text_stream(request: QueryRequest):
|
|
|
|
"""
|
|
|
|
This endpoint performs a retrieval-augmented generation (RAG) query and streams the response.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
request (QueryRequest): The request object containing the query parameters.
|
|
|
|
optional_api_key (Optional[str], optional): An optional API key for authentication. Defaults to None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
StreamingResponse: A streaming response containing the RAG query results.
|
|
|
|
"""
|
|
|
|
try:
|
2025-02-16 21:11:05 +08:00
|
|
|
params = QueryRequestToQueryParams(request)
|
|
|
|
|
|
|
|
params.stream = True
|
2025-02-15 22:25:48 +08:00
|
|
|
response = await rag.aquery( # Use aquery instead of query, and add await
|
2025-02-16 21:11:05 +08:00
|
|
|
request.query, param=params
|
2025-02-15 22:25:48 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
from fastapi.responses import StreamingResponse
|
|
|
|
|
|
|
|
async def stream_generator():
|
|
|
|
if isinstance(response, str):
|
|
|
|
# If it's a string, send it all at once
|
|
|
|
yield f"{json.dumps({'response': response})}\n"
|
|
|
|
else:
|
|
|
|
# If it's an async generator, send chunks one by one
|
|
|
|
try:
|
|
|
|
async for chunk in response:
|
|
|
|
if chunk: # Only send non-empty content
|
|
|
|
yield f"{json.dumps({'response': chunk})}\n"
|
|
|
|
except Exception as e:
|
|
|
|
logging.error(f"Streaming error: {str(e)}")
|
|
|
|
yield f"{json.dumps({'error': str(e)})}\n"
|
|
|
|
|
|
|
|
return StreamingResponse(
|
|
|
|
stream_generator(),
|
|
|
|
media_type="application/x-ndjson",
|
|
|
|
headers={
|
|
|
|
"Cache-Control": "no-cache",
|
|
|
|
"Connection": "keep-alive",
|
|
|
|
"Content-Type": "application/x-ndjson",
|
2025-02-16 19:07:06 +01:00
|
|
|
"X-Accel-Buffering": "no", # Ensure proper handling of streaming response when proxied by Nginx
|
2025-02-15 22:25:48 +08:00
|
|
|
},
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
except Exception as e:
|
2025-02-15 22:25:48 +08:00
|
|
|
trace_exception(e)
|
2024-12-22 00:38:38 +01:00
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
feat: Added webui management, including file upload, text upload, Q&A query, graph database management (can view tags, view knowledge graph based on tags), system status (whether it is good, data storage status, model status, path),request /webui/index.html
2025-01-25 18:38:46 +08:00
|
|
|
# query all graph labels
|
|
|
|
@app.get("/graph/label/list")
|
|
|
|
async def get_graph_labels():
|
|
|
|
return await rag.get_graph_labels()
|
|
|
|
|
|
|
|
# query all graph
|
|
|
|
@app.get("/graphs")
|
2025-02-13 17:32:51 +08:00
|
|
|
async def get_knowledge_graph(label: str):
|
|
|
|
return await rag.get_knowledge_graph(nodel_label=label, max_depth=100)
|
feat: Added webui management, including file upload, text upload, Q&A query, graph database management (can view tags, view knowledge graph based on tags), system status (whether it is good, data storage status, model status, path),request /webui/index.html
2025-01-25 18:38:46 +08:00
|
|
|
|
2025-02-05 22:15:14 +08:00
|
|
|
# Add Ollama API routes
|
2025-02-13 06:05:21 +08:00
|
|
|
ollama_api = OllamaAPI(rag, top_k=args.top_k)
|
2025-02-05 22:15:14 +08:00
|
|
|
app.include_router(ollama_api.router, prefix="/api")
|
2025-01-27 02:10:24 +01:00
|
|
|
|
2025-01-27 02:07:06 +01:00
|
|
|
@app.get("/documents", dependencies=[Depends(optional_api_key)])
|
2025-01-27 02:10:24 +01:00
|
|
|
async def documents():
|
2025-01-27 02:07:06 +01:00
|
|
|
"""Get current system status"""
|
|
|
|
return doc_manager.indexed_files
|
2025-01-19 04:44:30 +08:00
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
@app.get("/health", dependencies=[Depends(optional_api_key)])
|
2024-12-22 00:38:38 +01:00
|
|
|
async def get_status():
|
|
|
|
"""Get current system status"""
|
2025-01-27 12:02:22 +01:00
|
|
|
files = doc_manager.scan_directory()
|
2024-12-22 00:38:38 +01:00
|
|
|
return {
|
|
|
|
"status": "healthy",
|
|
|
|
"working_directory": str(args.working_dir),
|
|
|
|
"input_directory": str(args.input_dir),
|
2025-01-30 23:27:43 +01:00
|
|
|
"indexed_files": [str(f) for f in files],
|
2025-01-27 12:02:22 +01:00
|
|
|
"indexed_files_count": len(files),
|
2024-12-22 00:38:38 +01:00
|
|
|
"configuration": {
|
2025-01-10 20:30:58 +01:00
|
|
|
# LLM configuration binding/host address (if applicable)/model (if applicable)
|
|
|
|
"llm_binding": args.llm_binding,
|
|
|
|
"llm_binding_host": args.llm_binding_host,
|
|
|
|
"llm_model": args.llm_model,
|
|
|
|
# embedding model configuration binding/host address (if applicable)/model (if applicable)
|
|
|
|
"embedding_binding": args.embedding_binding,
|
|
|
|
"embedding_binding_host": args.embedding_binding_host,
|
2024-12-22 00:38:38 +01:00
|
|
|
"embedding_model": args.embedding_model,
|
|
|
|
"max_tokens": args.max_tokens,
|
2025-02-13 04:04:51 +08:00
|
|
|
"kv_storage": args.kv_storage,
|
|
|
|
"doc_status_storage": args.doc_status_storage,
|
|
|
|
"graph_storage": args.graph_storage,
|
|
|
|
"vector_storage": args.vector_storage,
|
2024-12-22 00:38:38 +01:00
|
|
|
},
|
|
|
|
}
|
2025-01-24 21:01:34 +01:00
|
|
|
|
2025-02-13 17:53:12 +08:00
|
|
|
# Webui mount webui/index.html
|
|
|
|
webui_dir = Path(__file__).parent / "webui"
|
2025-02-09 23:16:11 +08:00
|
|
|
app.mount(
|
2025-02-09 23:28:29 +08:00
|
|
|
"/graph-viewer",
|
2025-02-09 23:16:11 +08:00
|
|
|
StaticFiles(directory=webui_dir, html=True),
|
2025-02-13 17:53:12 +08:00
|
|
|
name="webui",
|
2025-02-09 23:16:11 +08:00
|
|
|
)
|
feat: Added webui management, including file upload, text upload, Q&A query, graph database management (can view tags, view knowledge graph based on tags), system status (whether it is good, data storage status, model status, path),request /webui/index.html
2025-01-25 18:38:46 +08:00
|
|
|
|
2025-01-24 13:50:06 +01:00
|
|
|
# Serve the static files
|
2025-01-27 02:10:24 +01:00
|
|
|
static_dir = Path(__file__).parent / "static"
|
2025-01-24 13:50:06 +01:00
|
|
|
static_dir.mkdir(exist_ok=True)
|
2025-02-09 23:28:29 +08:00
|
|
|
app.mount("/webui", StaticFiles(directory=static_dir, html=True), name="static")
|
2024-12-22 00:38:38 +01:00
|
|
|
|
|
|
|
return app
|
|
|
|
|
2025-01-24 21:01:34 +01:00
|
|
|
|
2024-12-24 10:18:41 +01:00
|
|
|
def main():
|
2024-12-22 00:38:38 +01:00
|
|
|
args = parse_args()
|
|
|
|
import uvicorn
|
|
|
|
|
|
|
|
app = create_app(args)
|
2025-01-24 21:01:34 +01:00
|
|
|
display_splash_screen(args)
|
2025-01-11 01:35:49 +01:00
|
|
|
uvicorn_config = {
|
|
|
|
"app": app,
|
|
|
|
"host": args.host,
|
|
|
|
"port": args.port,
|
2025-01-11 01:37:07 +01:00
|
|
|
}
|
2025-01-11 01:35:49 +01:00
|
|
|
if args.ssl:
|
2025-01-11 01:37:07 +01:00
|
|
|
uvicorn_config.update(
|
|
|
|
{
|
|
|
|
"ssl_certfile": args.ssl_certfile,
|
|
|
|
"ssl_keyfile": args.ssl_keyfile,
|
|
|
|
}
|
|
|
|
)
|
2025-01-11 01:35:49 +01:00
|
|
|
uvicorn.run(**uvicorn_config)
|
2024-12-24 10:18:41 +01:00
|
|
|
|
2024-12-24 10:35:00 +01:00
|
|
|
|
2024-12-24 10:18:41 +01:00
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|