mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-06 16:41:18 +00:00
115 lines
3.0 KiB
Python
115 lines
3.0 KiB
Python
![]() |
import numpy as np
|
||
|
from lightrag import LightRAG, QueryParam
|
||
|
from lightrag.utils import EmbeddingFunc
|
||
|
from lightrag.llm import jina_embedding, openai_complete_if_cache
|
||
|
import os
|
||
|
import asyncio
|
||
|
|
||
|
|
||
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||
|
return await jina_embedding(texts, api_key="YourJinaAPIKey")
|
||
|
|
||
|
|
||
|
WORKING_DIR = "./dickens"
|
||
|
|
||
|
if not os.path.exists(WORKING_DIR):
|
||
|
os.mkdir(WORKING_DIR)
|
||
|
|
||
|
|
||
|
async def llm_model_func(
|
||
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
||
|
) -> str:
|
||
|
return await openai_complete_if_cache(
|
||
|
"solar-mini",
|
||
|
prompt,
|
||
|
system_prompt=system_prompt,
|
||
|
history_messages=history_messages,
|
||
|
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||
|
base_url="https://api.upstage.ai/v1/solar",
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
rag = LightRAG(
|
||
|
working_dir=WORKING_DIR,
|
||
|
llm_model_func=llm_model_func,
|
||
|
embedding_func=EmbeddingFunc(
|
||
|
embedding_dim=1024, max_token_size=8192, func=embedding_func
|
||
|
),
|
||
|
)
|
||
|
|
||
|
|
||
|
async def lightraginsert(file_path, semaphore):
|
||
|
async with semaphore:
|
||
|
try:
|
||
|
with open(file_path, "r", encoding="utf-8") as f:
|
||
|
content = f.read()
|
||
|
except UnicodeDecodeError:
|
||
|
# If UTF-8 decoding fails, try other encodings
|
||
|
with open(file_path, "r", encoding="gbk") as f:
|
||
|
content = f.read()
|
||
|
await rag.ainsert(content)
|
||
|
|
||
|
|
||
|
async def process_files(directory, concurrency_limit):
|
||
|
semaphore = asyncio.Semaphore(concurrency_limit)
|
||
|
tasks = []
|
||
|
for root, dirs, files in os.walk(directory):
|
||
|
for f in files:
|
||
|
file_path = os.path.join(root, f)
|
||
|
if f.startswith("."):
|
||
|
continue
|
||
|
tasks.append(lightraginsert(file_path, semaphore))
|
||
|
await asyncio.gather(*tasks)
|
||
|
|
||
|
|
||
|
async def main():
|
||
|
try:
|
||
|
rag = LightRAG(
|
||
|
working_dir=WORKING_DIR,
|
||
|
llm_model_func=llm_model_func,
|
||
|
embedding_func=EmbeddingFunc(
|
||
|
embedding_dim=1024,
|
||
|
max_token_size=8192,
|
||
|
func=embedding_func,
|
||
|
),
|
||
|
)
|
||
|
|
||
|
asyncio.run(process_files(WORKING_DIR, concurrency_limit=4))
|
||
|
|
||
|
# Perform naive search
|
||
|
print(
|
||
|
await rag.aquery(
|
||
|
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
||
|
)
|
||
|
)
|
||
|
|
||
|
# Perform local search
|
||
|
print(
|
||
|
await rag.aquery(
|
||
|
"What are the top themes in this story?", param=QueryParam(mode="local")
|
||
|
)
|
||
|
)
|
||
|
|
||
|
# Perform global search
|
||
|
print(
|
||
|
await rag.aquery(
|
||
|
"What are the top themes in this story?",
|
||
|
param=QueryParam(mode="global"),
|
||
|
)
|
||
|
)
|
||
|
|
||
|
# Perform hybrid search
|
||
|
print(
|
||
|
await rag.aquery(
|
||
|
"What are the top themes in this story?",
|
||
|
param=QueryParam(mode="hybrid"),
|
||
|
)
|
||
|
)
|
||
|
except Exception as e:
|
||
|
print(f"An error occurred: {e}")
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
asyncio.run(main())
|