LightRAG/examples/lightrag_ollama_demo.py

71 lines
1.7 KiB
Python
Raw Normal View History

import asyncio
2024-10-16 15:15:10 +08:00
import os
import inspect
import logging
2024-10-16 15:15:10 +08:00
from lightrag import LightRAG, QueryParam
from lightrag.llm import ollama_model_complete, ollama_embedding
from lightrag.utils import EmbeddingFunc
WORKING_DIR = "./dickens"
2024-10-28 17:05:38 +02:00
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
2024-10-16 15:15:10 +08:00
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete,
llm_model_name="gemma2:2b",
llm_model_max_async=4,
llm_model_max_token_size=32768,
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
2024-10-16 15:15:10 +08:00
embedding_func=EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=lambda texts: ollama_embedding(
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
),
2024-10-16 15:15:10 +08:00
),
)
with open("./book.txt", "r", encoding="utf-8") as f:
2024-10-16 15:15:10 +08:00
rag.insert(f.read())
# Perform naive search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
)
2024-10-16 15:15:10 +08:00
# Perform local search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
)
2024-10-16 15:15:10 +08:00
# Perform global search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
)
2024-10-16 15:15:10 +08:00
# Perform hybrid search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
)
# stream response
resp = rag.query(
"What are the top themes in this story?",
param=QueryParam(mode="hybrid", stream=True),
)
async def print_stream(stream):
async for chunk in stream:
print(chunk, end="", flush=True)
if inspect.isasyncgen(resp):
asyncio.run(print_stream(resp))
else:
print(resp)