mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-04 07:26:17 +00:00
128 lines
3.5 KiB
Python
128 lines
3.5 KiB
Python
![]() |
import asyncio
|
||
|
import os
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from lightrag import LightRAG, QueryParam
|
||
|
from lightrag.kg.tidb_impl import TiDB
|
||
|
from lightrag.llm import siliconcloud_embedding, openai_complete_if_cache
|
||
|
from lightrag.utils import EmbeddingFunc
|
||
|
|
||
|
WORKING_DIR = "./dickens"
|
||
|
|
||
|
# We use SiliconCloud API to call LLM on Oracle Cloud
|
||
|
# More docs here https://docs.siliconflow.cn/introduction
|
||
|
BASE_URL = "https://api.siliconflow.cn/v1/"
|
||
|
APIKEY = ""
|
||
|
CHATMODEL = ""
|
||
|
EMBEDMODEL = ""
|
||
|
|
||
|
TIDB_HOST = ""
|
||
|
TIDB_PORT = ""
|
||
|
TIDB_USER = ""
|
||
|
TIDB_PASSWORD = ""
|
||
|
TIDB_DATABASE = ""
|
||
|
|
||
|
|
||
|
if not os.path.exists(WORKING_DIR):
|
||
|
os.mkdir(WORKING_DIR)
|
||
|
|
||
|
|
||
|
async def llm_model_func(
|
||
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||
|
) -> str:
|
||
|
return await openai_complete_if_cache(
|
||
|
CHATMODEL,
|
||
|
prompt,
|
||
|
system_prompt=system_prompt,
|
||
|
history_messages=history_messages,
|
||
|
api_key=APIKEY,
|
||
|
base_url=BASE_URL,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||
|
return await siliconcloud_embedding(
|
||
|
texts,
|
||
|
# model=EMBEDMODEL,
|
||
|
api_key=APIKEY,
|
||
|
)
|
||
|
|
||
|
|
||
|
async def get_embedding_dim():
|
||
|
test_text = ["This is a test sentence."]
|
||
|
embedding = await embedding_func(test_text)
|
||
|
embedding_dim = embedding.shape[1]
|
||
|
return embedding_dim
|
||
|
|
||
|
|
||
|
async def main():
|
||
|
try:
|
||
|
# Detect embedding dimension
|
||
|
embedding_dimension = await get_embedding_dim()
|
||
|
print(f"Detected embedding dimension: {embedding_dimension}")
|
||
|
|
||
|
# Create TiDB DB connection
|
||
|
tidb = TiDB(
|
||
|
config={
|
||
|
"host": TIDB_HOST,
|
||
|
"port": TIDB_PORT,
|
||
|
"user": TIDB_USER,
|
||
|
"password": TIDB_PASSWORD,
|
||
|
"database": TIDB_DATABASE,
|
||
|
"workspace": "company", # specify which docs you want to store and query
|
||
|
}
|
||
|
)
|
||
|
|
||
|
# Check if TiDB DB tables exist, if not, tables will be created
|
||
|
await tidb.check_tables()
|
||
|
|
||
|
# Initialize LightRAG
|
||
|
# We use TiDB DB as the KV/vector
|
||
|
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
||
|
rag = LightRAG(
|
||
|
enable_llm_cache=False,
|
||
|
working_dir=WORKING_DIR,
|
||
|
chunk_token_size=512,
|
||
|
llm_model_func=llm_model_func,
|
||
|
embedding_func=EmbeddingFunc(
|
||
|
embedding_dim=embedding_dimension,
|
||
|
max_token_size=512,
|
||
|
func=embedding_func,
|
||
|
),
|
||
|
kv_storage="TiDBKVStorage",
|
||
|
vector_storage="TiDBVectorDBStorage",
|
||
|
)
|
||
|
|
||
|
if rag.llm_response_cache:
|
||
|
rag.llm_response_cache.db = tidb
|
||
|
rag.full_docs.db = tidb
|
||
|
rag.text_chunks.db = tidb
|
||
|
rag.entities_vdb.db = tidb
|
||
|
rag.relationships_vdb.db = tidb
|
||
|
rag.chunks_vdb.db = tidb
|
||
|
|
||
|
# Extract and Insert into LightRAG storage
|
||
|
with open("./dickens/demo.txt", "r", encoding="utf-8") as f:
|
||
|
await rag.ainsert(f.read())
|
||
|
|
||
|
# Perform search in different modes
|
||
|
modes = ["naive", "local", "global", "hybrid"]
|
||
|
for mode in modes:
|
||
|
print("=" * 20, mode, "=" * 20)
|
||
|
print(
|
||
|
await rag.aquery(
|
||
|
"What are the top themes in this story?",
|
||
|
param=QueryParam(mode=mode),
|
||
|
)
|
||
|
)
|
||
|
print("-" * 100, "\n")
|
||
|
|
||
|
except Exception as e:
|
||
|
print(f"An error occurred: {e}")
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
asyncio.run(main())
|