2024-10-10 15:02:30 +08:00
|
|
|
import os
|
2024-10-18 16:50:02 +01:00
|
|
|
import copy
|
2024-10-18 14:17:14 +01:00
|
|
|
import json
|
2024-10-18 16:50:02 +01:00
|
|
|
import botocore
|
2024-10-18 14:17:14 +01:00
|
|
|
import aioboto3
|
2024-10-18 16:50:02 +01:00
|
|
|
import botocore.errorfactory
|
2024-10-10 15:02:30 +08:00
|
|
|
import numpy as np
|
2024-10-16 15:15:10 +08:00
|
|
|
import ollama
|
2024-10-10 15:02:30 +08:00
|
|
|
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
|
|
|
from tenacity import (
|
|
|
|
retry,
|
|
|
|
stop_after_attempt,
|
|
|
|
wait_exponential,
|
|
|
|
retry_if_exception_type,
|
|
|
|
)
|
2024-10-14 19:41:07 +08:00
|
|
|
from transformers import AutoModel,AutoTokenizer, AutoModelForCausalLM
|
|
|
|
import torch
|
2024-10-10 15:02:30 +08:00
|
|
|
from .base import BaseKVStorage
|
|
|
|
from .utils import compute_args_hash, wrap_embedding_func_with_attrs
|
2024-10-14 19:41:07 +08:00
|
|
|
import copy
|
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
2024-10-10 15:02:30 +08:00
|
|
|
@retry(
|
|
|
|
stop=stop_after_attempt(3),
|
|
|
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
|
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
|
|
|
)
|
|
|
|
async def openai_complete_if_cache(
|
2024-10-15 12:55:05 -07:00
|
|
|
model, prompt, system_prompt=None, history_messages=[], base_url=None, api_key=None, **kwargs
|
2024-10-10 15:02:30 +08:00
|
|
|
) -> str:
|
2024-10-15 12:55:05 -07:00
|
|
|
if api_key:
|
|
|
|
os.environ["OPENAI_API_KEY"] = api_key
|
|
|
|
|
|
|
|
openai_async_client = AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
2024-10-10 15:02:30 +08:00
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
|
|
|
messages = []
|
|
|
|
if system_prompt:
|
|
|
|
messages.append({"role": "system", "content": system_prompt})
|
|
|
|
messages.extend(history_messages)
|
|
|
|
messages.append({"role": "user", "content": prompt})
|
|
|
|
if hashing_kv is not None:
|
|
|
|
args_hash = compute_args_hash(model, messages)
|
|
|
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
|
|
|
if if_cache_return is not None:
|
|
|
|
return if_cache_return["return"]
|
|
|
|
|
|
|
|
response = await openai_async_client.chat.completions.create(
|
|
|
|
model=model, messages=messages, **kwargs
|
|
|
|
)
|
|
|
|
|
|
|
|
if hashing_kv is not None:
|
|
|
|
await hashing_kv.upsert(
|
|
|
|
{args_hash: {"return": response.choices[0].message.content, "model": model}}
|
|
|
|
)
|
|
|
|
return response.choices[0].message.content
|
|
|
|
|
2024-10-18 16:50:02 +01:00
|
|
|
|
|
|
|
class BedrockError(Exception):
|
|
|
|
"""Generic error for issues related to Amazon Bedrock"""
|
|
|
|
|
|
|
|
|
2024-10-18 14:17:14 +01:00
|
|
|
@retry(
|
2024-10-18 16:50:02 +01:00
|
|
|
stop=stop_after_attempt(5),
|
|
|
|
wait=wait_exponential(multiplier=1, max=60),
|
|
|
|
retry=retry_if_exception_type((BedrockError)),
|
2024-10-18 14:17:14 +01:00
|
|
|
)
|
|
|
|
async def bedrock_complete_if_cache(
|
2024-10-18 16:50:02 +01:00
|
|
|
model, prompt, system_prompt=None, history_messages=[],
|
2024-10-18 14:17:14 +01:00
|
|
|
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, **kwargs
|
|
|
|
) -> str:
|
|
|
|
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
|
|
|
|
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
|
|
|
|
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
|
|
|
|
|
2024-10-18 16:50:02 +01:00
|
|
|
# Fix message history format
|
2024-10-18 14:17:14 +01:00
|
|
|
messages = []
|
2024-10-18 16:50:02 +01:00
|
|
|
for history_message in history_messages:
|
|
|
|
message = copy.copy(history_message)
|
|
|
|
message['content'] = [{'text': message['content']}]
|
|
|
|
messages.append(message)
|
|
|
|
|
|
|
|
# Add user prompt
|
2024-10-18 14:17:14 +01:00
|
|
|
messages.append({'role': "user", 'content': [{'text': prompt}]})
|
|
|
|
|
2024-10-18 16:50:02 +01:00
|
|
|
# Initialize Converse API arguments
|
2024-10-18 14:17:14 +01:00
|
|
|
args = {
|
|
|
|
'modelId': model,
|
|
|
|
'messages': messages
|
|
|
|
}
|
|
|
|
|
2024-10-18 16:50:02 +01:00
|
|
|
# Define system prompt
|
2024-10-18 14:17:14 +01:00
|
|
|
if system_prompt:
|
|
|
|
args['system'] = [{'text': system_prompt}]
|
|
|
|
|
2024-10-18 16:50:02 +01:00
|
|
|
# Map and set up inference parameters
|
|
|
|
inference_params_map = {
|
|
|
|
'max_tokens': "maxTokens",
|
|
|
|
'top_p': "topP",
|
|
|
|
'stop_sequences': "stopSequences"
|
|
|
|
}
|
|
|
|
if (inference_params := list(set(kwargs) & set(['max_tokens', 'temperature', 'top_p', 'stop_sequences']))):
|
|
|
|
args['inferenceConfig'] = {}
|
|
|
|
for param in inference_params:
|
|
|
|
args['inferenceConfig'][inference_params_map.get(param, param)] = kwargs.pop(param)
|
|
|
|
|
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
2024-10-18 14:17:14 +01:00
|
|
|
if hashing_kv is not None:
|
|
|
|
args_hash = compute_args_hash(model, messages)
|
|
|
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
|
|
|
if if_cache_return is not None:
|
|
|
|
return if_cache_return["return"]
|
|
|
|
|
2024-10-18 16:50:02 +01:00
|
|
|
# Call model via Converse API
|
2024-10-18 14:17:14 +01:00
|
|
|
session = aioboto3.Session()
|
|
|
|
async with session.client("bedrock-runtime") as bedrock_async_client:
|
|
|
|
|
2024-10-18 16:50:02 +01:00
|
|
|
try:
|
|
|
|
response = await bedrock_async_client.converse(**args, **kwargs)
|
|
|
|
except Exception as e:
|
|
|
|
raise BedrockError(e)
|
2024-10-18 14:17:14 +01:00
|
|
|
|
|
|
|
if hashing_kv is not None:
|
|
|
|
await hashing_kv.upsert({
|
|
|
|
args_hash: {
|
|
|
|
'return': response['output']['message']['content'][0]['text'],
|
|
|
|
'model': model
|
|
|
|
}
|
|
|
|
})
|
|
|
|
|
|
|
|
return response['output']['message']['content'][0]['text']
|
|
|
|
|
2024-10-14 19:41:07 +08:00
|
|
|
async def hf_model_if_cache(
|
|
|
|
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
) -> str:
|
|
|
|
model_name = model
|
|
|
|
hf_tokenizer = AutoTokenizer.from_pretrained(model_name,device_map = 'auto')
|
|
|
|
if hf_tokenizer.pad_token == None:
|
|
|
|
# print("use eos token")
|
|
|
|
hf_tokenizer.pad_token = hf_tokenizer.eos_token
|
|
|
|
hf_model = AutoModelForCausalLM.from_pretrained(model_name,device_map = 'auto')
|
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
|
|
|
messages = []
|
|
|
|
if system_prompt:
|
|
|
|
messages.append({"role": "system", "content": system_prompt})
|
|
|
|
messages.extend(history_messages)
|
|
|
|
messages.append({"role": "user", "content": prompt})
|
|
|
|
|
|
|
|
if hashing_kv is not None:
|
|
|
|
args_hash = compute_args_hash(model, messages)
|
|
|
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
|
|
|
if if_cache_return is not None:
|
|
|
|
return if_cache_return["return"]
|
|
|
|
input_prompt = ''
|
|
|
|
try:
|
|
|
|
input_prompt = hf_tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
except:
|
|
|
|
try:
|
|
|
|
ori_message = copy.deepcopy(messages)
|
|
|
|
if messages[0]['role'] == "system":
|
|
|
|
messages[1]['content'] = "<system>" + messages[0]['content'] + "</system>\n" + messages[1]['content']
|
|
|
|
messages = messages[1:]
|
|
|
|
input_prompt = hf_tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
except:
|
|
|
|
len_message = len(ori_message)
|
|
|
|
for msgid in range(len_message):
|
|
|
|
input_prompt =input_prompt+ '<'+ori_message[msgid]['role']+'>'+ori_message[msgid]['content']+'</'+ori_message[msgid]['role']+'>\n'
|
|
|
|
|
|
|
|
input_ids = hf_tokenizer(input_prompt, return_tensors='pt', padding=True, truncation=True).to("cuda")
|
|
|
|
output = hf_model.generate(**input_ids, max_new_tokens=200, num_return_sequences=1,early_stopping = True)
|
|
|
|
response_text = hf_tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
if hashing_kv is not None:
|
|
|
|
await hashing_kv.upsert(
|
|
|
|
{args_hash: {"return": response_text, "model": model}}
|
|
|
|
)
|
|
|
|
return response_text
|
|
|
|
|
2024-10-16 15:15:10 +08:00
|
|
|
async def ollama_model_if_cache(
|
|
|
|
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
) -> str:
|
|
|
|
kwargs.pop("max_tokens", None)
|
|
|
|
kwargs.pop("response_format", None)
|
|
|
|
|
|
|
|
ollama_client = ollama.AsyncClient()
|
|
|
|
messages = []
|
|
|
|
if system_prompt:
|
|
|
|
messages.append({"role": "system", "content": system_prompt})
|
|
|
|
|
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
|
|
|
messages.extend(history_messages)
|
|
|
|
messages.append({"role": "user", "content": prompt})
|
|
|
|
if hashing_kv is not None:
|
|
|
|
args_hash = compute_args_hash(model, messages)
|
|
|
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
|
|
|
if if_cache_return is not None:
|
|
|
|
return if_cache_return["return"]
|
|
|
|
|
|
|
|
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
|
|
|
|
|
|
|
|
result = response["message"]["content"]
|
|
|
|
|
|
|
|
if hashing_kv is not None:
|
|
|
|
await hashing_kv.upsert({args_hash: {"return": result, "model": model}})
|
|
|
|
|
|
|
|
return result
|
2024-10-14 19:41:07 +08:00
|
|
|
|
2024-10-10 15:02:30 +08:00
|
|
|
async def gpt_4o_complete(
|
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
) -> str:
|
|
|
|
return await openai_complete_if_cache(
|
|
|
|
"gpt-4o",
|
|
|
|
prompt,
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
history_messages=history_messages,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
async def gpt_4o_mini_complete(
|
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
) -> str:
|
|
|
|
return await openai_complete_if_cache(
|
|
|
|
"gpt-4o-mini",
|
|
|
|
prompt,
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
history_messages=history_messages,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
2024-10-18 14:17:14 +01:00
|
|
|
|
|
|
|
async def bedrock_complete(
|
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
) -> str:
|
|
|
|
return await bedrock_complete_if_cache(
|
2024-10-18 16:50:02 +01:00
|
|
|
"anthropic.claude-3-haiku-20240307-v1:0",
|
2024-10-18 14:17:14 +01:00
|
|
|
prompt,
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
history_messages=history_messages,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
2024-10-14 20:33:46 +08:00
|
|
|
async def hf_model_complete(
|
2024-10-14 19:41:07 +08:00
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
) -> str:
|
2024-10-15 20:06:59 +08:00
|
|
|
model_name = kwargs['hashing_kv'].global_config['llm_model_name']
|
2024-10-14 19:41:07 +08:00
|
|
|
return await hf_model_if_cache(
|
2024-10-15 20:06:59 +08:00
|
|
|
model_name,
|
2024-10-14 19:41:07 +08:00
|
|
|
prompt,
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
history_messages=history_messages,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
2024-10-16 15:15:10 +08:00
|
|
|
async def ollama_model_complete(
|
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
) -> str:
|
|
|
|
model_name = kwargs['hashing_kv'].global_config['llm_model_name']
|
|
|
|
return await ollama_model_if_cache(
|
|
|
|
model_name,
|
|
|
|
prompt,
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
history_messages=history_messages,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
2024-10-10 15:02:30 +08:00
|
|
|
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
|
|
|
@retry(
|
|
|
|
stop=stop_after_attempt(3),
|
|
|
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
|
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
|
|
|
)
|
2024-10-15 12:55:05 -07:00
|
|
|
async def openai_embedding(texts: list[str], model: str = "text-embedding-3-small", base_url: str = None, api_key: str = None) -> np.ndarray:
|
|
|
|
if api_key:
|
|
|
|
os.environ["OPENAI_API_KEY"] = api_key
|
|
|
|
|
|
|
|
openai_async_client = AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
2024-10-10 15:02:30 +08:00
|
|
|
response = await openai_async_client.embeddings.create(
|
2024-10-15 12:55:05 -07:00
|
|
|
model=model, input=texts, encoding_format="float"
|
2024-10-10 15:02:30 +08:00
|
|
|
)
|
|
|
|
return np.array([dp.embedding for dp in response.data])
|
|
|
|
|
2024-10-14 19:41:07 +08:00
|
|
|
|
2024-10-18 14:17:14 +01:00
|
|
|
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
|
|
|
# @retry(
|
|
|
|
# stop=stop_after_attempt(3),
|
|
|
|
# wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
|
|
# retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions
|
|
|
|
# )
|
|
|
|
async def bedrock_embedding(
|
|
|
|
texts: list[str], model: str = "amazon.titan-embed-text-v2:0",
|
|
|
|
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None) -> np.ndarray:
|
|
|
|
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
|
|
|
|
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
|
|
|
|
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
|
|
|
|
|
|
|
|
session = aioboto3.Session()
|
|
|
|
async with session.client("bedrock-runtime") as bedrock_async_client:
|
|
|
|
|
|
|
|
if (model_provider := model.split(".")[0]) == "amazon":
|
|
|
|
embed_texts = []
|
|
|
|
for text in texts:
|
|
|
|
if "v2" in model:
|
|
|
|
body = json.dumps({
|
|
|
|
'inputText': text,
|
|
|
|
# 'dimensions': embedding_dim,
|
|
|
|
'embeddingTypes': ["float"]
|
|
|
|
})
|
|
|
|
elif "v1" in model:
|
|
|
|
body = json.dumps({
|
|
|
|
'inputText': text
|
|
|
|
})
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Model {model} is not supported!")
|
|
|
|
|
|
|
|
response = await bedrock_async_client.invoke_model(
|
|
|
|
modelId=model,
|
|
|
|
body=body,
|
|
|
|
accept="application/json",
|
|
|
|
contentType="application/json"
|
|
|
|
)
|
|
|
|
|
|
|
|
response_body = await response.get('body').json()
|
|
|
|
|
|
|
|
embed_texts.append(response_body['embedding'])
|
|
|
|
elif model_provider == "cohere":
|
|
|
|
body = json.dumps({
|
|
|
|
'texts': texts,
|
|
|
|
'input_type': "search_document",
|
|
|
|
'truncate': "NONE"
|
|
|
|
})
|
|
|
|
|
|
|
|
response = await bedrock_async_client.invoke_model(
|
|
|
|
model=model,
|
|
|
|
body=body,
|
|
|
|
accept="application/json",
|
|
|
|
contentType="application/json"
|
|
|
|
)
|
|
|
|
|
|
|
|
response_body = json.loads(response.get('body').read())
|
|
|
|
|
|
|
|
embed_texts = response_body['embeddings']
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Model provider '{model_provider}' is not supported!")
|
|
|
|
|
|
|
|
return np.array(embed_texts)
|
|
|
|
|
|
|
|
|
2024-10-15 19:40:08 +08:00
|
|
|
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
2024-10-14 19:41:07 +08:00
|
|
|
input_ids = tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
|
|
|
|
with torch.no_grad():
|
2024-10-15 19:40:08 +08:00
|
|
|
outputs = embed_model(input_ids)
|
2024-10-14 19:41:07 +08:00
|
|
|
embeddings = outputs.last_hidden_state.mean(dim=1)
|
|
|
|
return embeddings.detach().numpy()
|
|
|
|
|
2024-10-16 15:15:10 +08:00
|
|
|
async def ollama_embedding(texts: list[str], embed_model) -> np.ndarray:
|
|
|
|
embed_text = []
|
|
|
|
for text in texts:
|
|
|
|
data = ollama.embeddings(model=embed_model, prompt=text)
|
|
|
|
embed_text.append(data["embedding"])
|
|
|
|
|
|
|
|
return embed_text
|
2024-10-14 19:41:07 +08:00
|
|
|
|
2024-10-10 15:02:30 +08:00
|
|
|
if __name__ == "__main__":
|
|
|
|
import asyncio
|
|
|
|
|
|
|
|
async def main():
|
|
|
|
result = await gpt_4o_mini_complete('How are you?')
|
|
|
|
print(result)
|
|
|
|
|
|
|
|
asyncio.run(main())
|