370 lines
13 KiB
Python
Raw Normal View History

2024-10-10 15:02:30 +08:00
import os
import copy
import json
import botocore
import aioboto3
import botocore.errorfactory
2024-10-10 15:02:30 +08:00
import numpy as np
2024-10-16 15:15:10 +08:00
import ollama
2024-10-10 15:02:30 +08:00
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
from tenacity import (
retry,
stop_after_attempt,
wait_exponential,
retry_if_exception_type,
)
2024-10-14 19:41:07 +08:00
from transformers import AutoModel,AutoTokenizer, AutoModelForCausalLM
import torch
2024-10-10 15:02:30 +08:00
from .base import BaseKVStorage
from .utils import compute_args_hash, wrap_embedding_func_with_attrs
2024-10-14 19:41:07 +08:00
import copy
os.environ["TOKENIZERS_PARALLELISM"] = "false"
2024-10-10 15:02:30 +08:00
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
)
async def openai_complete_if_cache(
model, prompt, system_prompt=None, history_messages=[], base_url=None, api_key=None, **kwargs
2024-10-10 15:02:30 +08:00
) -> str:
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
openai_async_client = AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
2024-10-10 15:02:30 +08:00
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
response = await openai_async_client.chat.completions.create(
model=model, messages=messages, **kwargs
)
if hashing_kv is not None:
await hashing_kv.upsert(
{args_hash: {"return": response.choices[0].message.content, "model": model}}
)
return response.choices[0].message.content
class BedrockError(Exception):
"""Generic error for issues related to Amazon Bedrock"""
@retry(
stop=stop_after_attempt(5),
wait=wait_exponential(multiplier=1, max=60),
retry=retry_if_exception_type((BedrockError)),
)
async def bedrock_complete_if_cache(
model, prompt, system_prompt=None, history_messages=[],
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, **kwargs
) -> str:
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
# Fix message history format
messages = []
for history_message in history_messages:
message = copy.copy(history_message)
message['content'] = [{'text': message['content']}]
messages.append(message)
# Add user prompt
messages.append({'role': "user", 'content': [{'text': prompt}]})
# Initialize Converse API arguments
args = {
'modelId': model,
'messages': messages
}
# Define system prompt
if system_prompt:
args['system'] = [{'text': system_prompt}]
# Map and set up inference parameters
inference_params_map = {
'max_tokens': "maxTokens",
'top_p': "topP",
'stop_sequences': "stopSequences"
}
if (inference_params := list(set(kwargs) & set(['max_tokens', 'temperature', 'top_p', 'stop_sequences']))):
args['inferenceConfig'] = {}
for param in inference_params:
args['inferenceConfig'][inference_params_map.get(param, param)] = kwargs.pop(param)
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
# Call model via Converse API
session = aioboto3.Session()
async with session.client("bedrock-runtime") as bedrock_async_client:
try:
response = await bedrock_async_client.converse(**args, **kwargs)
except Exception as e:
raise BedrockError(e)
if hashing_kv is not None:
await hashing_kv.upsert({
args_hash: {
'return': response['output']['message']['content'][0]['text'],
'model': model
}
})
return response['output']['message']['content'][0]['text']
2024-10-14 19:41:07 +08:00
async def hf_model_if_cache(
model, prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
model_name = model
hf_tokenizer = AutoTokenizer.from_pretrained(model_name,device_map = 'auto')
if hf_tokenizer.pad_token == None:
# print("use eos token")
hf_tokenizer.pad_token = hf_tokenizer.eos_token
hf_model = AutoModelForCausalLM.from_pretrained(model_name,device_map = 'auto')
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
input_prompt = ''
try:
input_prompt = hf_tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
except:
try:
ori_message = copy.deepcopy(messages)
if messages[0]['role'] == "system":
messages[1]['content'] = "<system>" + messages[0]['content'] + "</system>\n" + messages[1]['content']
messages = messages[1:]
input_prompt = hf_tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
except:
len_message = len(ori_message)
for msgid in range(len_message):
input_prompt =input_prompt+ '<'+ori_message[msgid]['role']+'>'+ori_message[msgid]['content']+'</'+ori_message[msgid]['role']+'>\n'
input_ids = hf_tokenizer(input_prompt, return_tensors='pt', padding=True, truncation=True).to("cuda")
output = hf_model.generate(**input_ids, max_new_tokens=200, num_return_sequences=1,early_stopping = True)
response_text = hf_tokenizer.decode(output[0], skip_special_tokens=True)
if hashing_kv is not None:
await hashing_kv.upsert(
{args_hash: {"return": response_text, "model": model}}
)
return response_text
2024-10-16 15:15:10 +08:00
async def ollama_model_if_cache(
model, prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
kwargs.pop("max_tokens", None)
kwargs.pop("response_format", None)
ollama_client = ollama.AsyncClient()
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
result = response["message"]["content"]
if hashing_kv is not None:
await hashing_kv.upsert({args_hash: {"return": result, "model": model}})
return result
2024-10-14 19:41:07 +08:00
2024-10-10 15:02:30 +08:00
async def gpt_4o_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"gpt-4o",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
async def gpt_4o_mini_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"gpt-4o-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
async def bedrock_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await bedrock_complete_if_cache(
"anthropic.claude-3-haiku-20240307-v1:0",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
2024-10-14 20:33:46 +08:00
async def hf_model_complete(
2024-10-14 19:41:07 +08:00
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
2024-10-15 20:06:59 +08:00
model_name = kwargs['hashing_kv'].global_config['llm_model_name']
2024-10-14 19:41:07 +08:00
return await hf_model_if_cache(
2024-10-15 20:06:59 +08:00
model_name,
2024-10-14 19:41:07 +08:00
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
2024-10-16 15:15:10 +08:00
async def ollama_model_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
model_name = kwargs['hashing_kv'].global_config['llm_model_name']
return await ollama_model_if_cache(
model_name,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
2024-10-10 15:02:30 +08:00
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
)
async def openai_embedding(texts: list[str], model: str = "text-embedding-3-small", base_url: str = None, api_key: str = None) -> np.ndarray:
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
openai_async_client = AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
2024-10-10 15:02:30 +08:00
response = await openai_async_client.embeddings.create(
model=model, input=texts, encoding_format="float"
2024-10-10 15:02:30 +08:00
)
return np.array([dp.embedding for dp in response.data])
2024-10-14 19:41:07 +08:00
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
# @retry(
# stop=stop_after_attempt(3),
# wait=wait_exponential(multiplier=1, min=4, max=10),
# retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions
# )
async def bedrock_embedding(
texts: list[str], model: str = "amazon.titan-embed-text-v2:0",
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None) -> np.ndarray:
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
session = aioboto3.Session()
async with session.client("bedrock-runtime") as bedrock_async_client:
if (model_provider := model.split(".")[0]) == "amazon":
embed_texts = []
for text in texts:
if "v2" in model:
body = json.dumps({
'inputText': text,
# 'dimensions': embedding_dim,
'embeddingTypes': ["float"]
})
elif "v1" in model:
body = json.dumps({
'inputText': text
})
else:
raise ValueError(f"Model {model} is not supported!")
response = await bedrock_async_client.invoke_model(
modelId=model,
body=body,
accept="application/json",
contentType="application/json"
)
response_body = await response.get('body').json()
embed_texts.append(response_body['embedding'])
elif model_provider == "cohere":
body = json.dumps({
'texts': texts,
'input_type': "search_document",
'truncate': "NONE"
})
response = await bedrock_async_client.invoke_model(
model=model,
body=body,
accept="application/json",
contentType="application/json"
)
response_body = json.loads(response.get('body').read())
embed_texts = response_body['embeddings']
else:
raise ValueError(f"Model provider '{model_provider}' is not supported!")
return np.array(embed_texts)
2024-10-15 19:40:08 +08:00
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
2024-10-14 19:41:07 +08:00
input_ids = tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
with torch.no_grad():
2024-10-15 19:40:08 +08:00
outputs = embed_model(input_ids)
2024-10-14 19:41:07 +08:00
embeddings = outputs.last_hidden_state.mean(dim=1)
return embeddings.detach().numpy()
2024-10-16 15:15:10 +08:00
async def ollama_embedding(texts: list[str], embed_model) -> np.ndarray:
embed_text = []
for text in texts:
data = ollama.embeddings(model=embed_model, prompt=text)
embed_text.append(data["embedding"])
return embed_text
2024-10-14 19:41:07 +08:00
2024-10-10 15:02:30 +08:00
if __name__ == "__main__":
import asyncio
async def main():
result = await gpt_4o_mini_complete('How are you?')
print(result)
asyncio.run(main())