2024-10-10 15:02:30 +08:00
|
|
|
import asyncio
|
|
|
|
import html
|
|
|
|
import json
|
|
|
|
import logging
|
|
|
|
import os
|
|
|
|
import re
|
|
|
|
from dataclasses import dataclass
|
|
|
|
from functools import wraps
|
|
|
|
from hashlib import md5
|
|
|
|
from typing import Any, Union
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import tiktoken
|
|
|
|
|
|
|
|
ENCODER = None
|
|
|
|
|
|
|
|
logger = logging.getLogger("lightrag")
|
|
|
|
|
|
|
|
def set_logger(log_file: str):
|
|
|
|
logger.setLevel(logging.DEBUG)
|
|
|
|
|
|
|
|
file_handler = logging.FileHandler(log_file)
|
|
|
|
file_handler.setLevel(logging.DEBUG)
|
|
|
|
|
|
|
|
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
|
|
file_handler.setFormatter(formatter)
|
|
|
|
|
|
|
|
if not logger.handlers:
|
|
|
|
logger.addHandler(file_handler)
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class EmbeddingFunc:
|
|
|
|
embedding_dim: int
|
|
|
|
max_token_size: int
|
|
|
|
func: callable
|
|
|
|
|
|
|
|
async def __call__(self, *args, **kwargs) -> np.ndarray:
|
|
|
|
return await self.func(*args, **kwargs)
|
|
|
|
|
|
|
|
def locate_json_string_body_from_string(content: str) -> Union[str, None]:
|
|
|
|
"""Locate the JSON string body from a string"""
|
|
|
|
maybe_json_str = re.search(r"{.*}", content, re.DOTALL)
|
|
|
|
if maybe_json_str is not None:
|
|
|
|
return maybe_json_str.group(0)
|
|
|
|
else:
|
|
|
|
return None
|
|
|
|
|
|
|
|
def convert_response_to_json(response: str) -> dict:
|
|
|
|
json_str = locate_json_string_body_from_string(response)
|
|
|
|
assert json_str is not None, f"Unable to parse JSON from response: {response}"
|
|
|
|
try:
|
|
|
|
data = json.loads(json_str)
|
|
|
|
return data
|
|
|
|
except json.JSONDecodeError as e:
|
|
|
|
logger.error(f"Failed to parse JSON: {json_str}")
|
|
|
|
raise e from None
|
|
|
|
|
|
|
|
def compute_args_hash(*args):
|
|
|
|
return md5(str(args).encode()).hexdigest()
|
|
|
|
|
|
|
|
def compute_mdhash_id(content, prefix: str = ""):
|
|
|
|
return prefix + md5(content.encode()).hexdigest()
|
|
|
|
|
|
|
|
def limit_async_func_call(max_size: int, waitting_time: float = 0.0001):
|
|
|
|
"""Add restriction of maximum async calling times for a async func"""
|
|
|
|
|
|
|
|
def final_decro(func):
|
|
|
|
"""Not using async.Semaphore to aovid use nest-asyncio"""
|
|
|
|
__current_size = 0
|
|
|
|
|
|
|
|
@wraps(func)
|
|
|
|
async def wait_func(*args, **kwargs):
|
|
|
|
nonlocal __current_size
|
|
|
|
while __current_size >= max_size:
|
|
|
|
await asyncio.sleep(waitting_time)
|
|
|
|
__current_size += 1
|
|
|
|
result = await func(*args, **kwargs)
|
|
|
|
__current_size -= 1
|
|
|
|
return result
|
|
|
|
|
|
|
|
return wait_func
|
|
|
|
|
|
|
|
return final_decro
|
|
|
|
|
|
|
|
def wrap_embedding_func_with_attrs(**kwargs):
|
|
|
|
"""Wrap a function with attributes"""
|
|
|
|
|
|
|
|
def final_decro(func) -> EmbeddingFunc:
|
|
|
|
new_func = EmbeddingFunc(**kwargs, func=func)
|
|
|
|
return new_func
|
|
|
|
|
|
|
|
return final_decro
|
|
|
|
|
|
|
|
def load_json(file_name):
|
|
|
|
if not os.path.exists(file_name):
|
|
|
|
return None
|
2024-10-11 11:24:42 +08:00
|
|
|
with open(file_name, encoding="utf-8") as f:
|
2024-10-10 15:02:30 +08:00
|
|
|
return json.load(f)
|
|
|
|
|
|
|
|
def write_json(json_obj, file_name):
|
2024-10-11 11:24:42 +08:00
|
|
|
with open(file_name, "w", encoding="utf-8") as f:
|
2024-10-10 15:02:30 +08:00
|
|
|
json.dump(json_obj, f, indent=2, ensure_ascii=False)
|
|
|
|
|
|
|
|
def encode_string_by_tiktoken(content: str, model_name: str = "gpt-4o"):
|
|
|
|
global ENCODER
|
|
|
|
if ENCODER is None:
|
|
|
|
ENCODER = tiktoken.encoding_for_model(model_name)
|
|
|
|
tokens = ENCODER.encode(content)
|
|
|
|
return tokens
|
|
|
|
|
|
|
|
|
|
|
|
def decode_tokens_by_tiktoken(tokens: list[int], model_name: str = "gpt-4o"):
|
|
|
|
global ENCODER
|
|
|
|
if ENCODER is None:
|
|
|
|
ENCODER = tiktoken.encoding_for_model(model_name)
|
|
|
|
content = ENCODER.decode(tokens)
|
|
|
|
return content
|
|
|
|
|
|
|
|
def pack_user_ass_to_openai_messages(*args: str):
|
|
|
|
roles = ["user", "assistant"]
|
|
|
|
return [
|
|
|
|
{"role": roles[i % 2], "content": content} for i, content in enumerate(args)
|
|
|
|
]
|
|
|
|
|
|
|
|
def split_string_by_multi_markers(content: str, markers: list[str]) -> list[str]:
|
|
|
|
"""Split a string by multiple markers"""
|
|
|
|
if not markers:
|
|
|
|
return [content]
|
|
|
|
results = re.split("|".join(re.escape(marker) for marker in markers), content)
|
|
|
|
return [r.strip() for r in results if r.strip()]
|
|
|
|
|
|
|
|
# Refer the utils functions of the official GraphRAG implementation:
|
|
|
|
# https://github.com/microsoft/graphrag
|
|
|
|
def clean_str(input: Any) -> str:
|
|
|
|
"""Clean an input string by removing HTML escapes, control characters, and other unwanted characters."""
|
|
|
|
# If we get non-string input, just give it back
|
|
|
|
if not isinstance(input, str):
|
|
|
|
return input
|
|
|
|
|
|
|
|
result = html.unescape(input.strip())
|
|
|
|
# https://stackoverflow.com/questions/4324790/removing-control-characters-from-a-string-in-python
|
|
|
|
return re.sub(r"[\x00-\x1f\x7f-\x9f]", "", result)
|
|
|
|
|
|
|
|
def is_float_regex(value):
|
|
|
|
return bool(re.match(r"^[-+]?[0-9]*\.?[0-9]+$", value))
|
|
|
|
|
|
|
|
def truncate_list_by_token_size(list_data: list, key: callable, max_token_size: int):
|
|
|
|
"""Truncate a list of data by token size"""
|
|
|
|
if max_token_size <= 0:
|
|
|
|
return []
|
|
|
|
tokens = 0
|
|
|
|
for i, data in enumerate(list_data):
|
|
|
|
tokens += len(encode_string_by_tiktoken(key(data)))
|
|
|
|
if tokens > max_token_size:
|
|
|
|
return list_data[:i]
|
|
|
|
return list_data
|
|
|
|
|
|
|
|
def list_of_list_to_csv(data: list[list]):
|
|
|
|
return "\n".join(
|
|
|
|
[",\t".join([str(data_dd) for data_dd in data_d]) for data_d in data]
|
|
|
|
)
|
|
|
|
|
|
|
|
def save_data_to_file(data, file_name):
|
|
|
|
with open(file_name, 'w', encoding='utf-8') as f:
|
|
|
|
json.dump(data, f, ensure_ascii=False, indent=4)
|