LightRAG/lightrag/kg/postgres_impl.py

1302 lines
49 KiB
Python
Raw Normal View History

2025-01-01 22:43:59 +08:00
import asyncio
2025-01-27 09:39:39 +01:00
import json
2025-01-01 22:43:59 +08:00
import os
2025-01-27 09:39:39 +01:00
import time
from dataclasses import dataclass, field
from typing import Any, Union, final
2025-02-09 19:51:05 +01:00
import numpy as np
import configparser
2025-01-27 23:21:34 +08:00
2025-01-27 09:39:39 +01:00
import sys
from tenacity import (
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
2025-01-01 22:43:59 +08:00
2025-01-27 09:39:39 +01:00
from ..base import (
2025-02-09 19:51:05 +01:00
BaseGraphStorage,
2025-01-27 09:39:39 +01:00
BaseKVStorage,
BaseVectorStorage,
DocProcessingStatus,
2025-02-09 19:51:05 +01:00
DocStatus,
DocStatusStorage,
2025-01-27 09:39:39 +01:00
)
2025-02-08 16:05:59 +08:00
from ..namespace import NameSpace, is_namespace
2025-02-09 19:51:05 +01:00
from ..utils import logger
2025-01-01 22:43:59 +08:00
if sys.platform.startswith("win"):
import asyncio.windows_events
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
2025-02-16 15:08:50 +01:00
import pipmaster as pm
if not pm.is_installed("asyncpg"):
pm.install("asyncpg")
2025-02-19 19:50:46 +01:00
import asyncpg
from asyncpg import Pool
2025-01-01 22:43:59 +08:00
2025-02-19 20:50:39 +01:00
2025-01-27 09:39:39 +01:00
class PostgreSQLDB:
def __init__(self, config: dict[str, Any], **kwargs: Any):
2025-01-27 09:39:39 +01:00
self.host = config.get("host", "localhost")
self.port = config.get("port", 5432)
self.user = config.get("user", "postgres")
self.password = config.get("password", None)
self.database = config.get("database", "postgres")
self.workspace = config.get("workspace", "default")
self.max = 12
self.increment = 1
self.pool: Pool | None = None
2025-01-01 22:43:59 +08:00
2025-01-27 09:39:39 +01:00
if self.user is None or self.password is None or self.database is None:
raise ValueError(
2025-02-20 12:54:14 +01:00
"Missing database user, password, or database"
2025-01-27 09:39:39 +01:00
)
2025-01-01 22:43:59 +08:00
2025-01-27 09:39:39 +01:00
async def initdb(self):
try:
self.pool = await asyncpg.create_pool( # type: ignore
2025-01-27 09:39:39 +01:00
user=self.user,
password=self.password,
database=self.database,
host=self.host,
port=self.port,
min_size=1,
max_size=self.max,
)
logger.info(
f"PostgreSQL, Connected to database at {self.host}:{self.port}/{self.database}"
2025-01-27 09:39:39 +01:00
)
except Exception as e:
logger.error(
f"PostgreSQL, Failed to connect database at {self.host}:{self.port}/{self.database}, Got:{e}"
2025-01-27 09:39:39 +01:00
)
raise
2025-01-01 22:43:59 +08:00
2025-02-19 14:26:46 +01:00
@staticmethod
async def configure_age(connection: asyncpg.Connection, graph_name: str) -> None:
"""Set the Apache AGE environment and creates a graph if it does not exist.
This method:
- Sets the PostgreSQL `search_path` to include `ag_catalog`, ensuring that Apache AGE functions can be used without specifying the schema.
- Attempts to create a new graph with the provided `graph_name` if it does not already exist.
- Silently ignores errors related to the graph already existing.
"""
try:
await connection.execute( # type: ignore
'SET search_path = ag_catalog, "$user", public'
)
await connection.execute( # type: ignore
f"select create_graph('{graph_name}')"
)
except (
asyncpg.exceptions.InvalidSchemaNameError,
asyncpg.exceptions.UniqueViolationError,
):
pass
2025-01-27 09:39:39 +01:00
async def check_tables(self):
for k, v in TABLES.items():
2025-01-01 22:43:59 +08:00
try:
2025-02-09 19:51:05 +01:00
await self.query(f"SELECT 1 FROM {k} LIMIT 1")
2025-02-19 14:26:46 +01:00
except Exception:
2025-01-27 09:39:39 +01:00
try:
logger.info(f"PostgreSQL, Try Creating table {k} in database")
2025-01-27 09:39:39 +01:00
await self.execute(v["ddl"])
2025-02-19 14:26:46 +01:00
logger.info(
f"PostgreSQL, Creation success table {k} in PostgreSQL database"
)
2025-01-27 09:39:39 +01:00
except Exception as e:
logger.error(
f"PostgreSQL, Failed to create table {k} in database, Please verify the connection with PostgreSQL database, Got: {e}"
)
raise e
2025-01-27 09:39:39 +01:00
async def query(
self,
sql: str,
params: dict[str, Any] | None = None,
2025-01-27 09:39:39 +01:00
multirows: bool = False,
2025-02-19 14:26:46 +01:00
with_age: bool = False,
graph_name: str | None = None,
) -> dict[str, Any] | None | list[dict[str, Any]]:
async with self.pool.acquire() as connection: # type: ignore
2025-02-19 14:26:46 +01:00
if with_age and graph_name:
await self.configure_age(connection, graph_name) # type: ignore
elif with_age and not graph_name:
raise ValueError("Graph name is required when with_age is True")
2025-01-27 09:39:39 +01:00
try:
if params:
rows = await connection.fetch(sql, *params.values())
else:
rows = await connection.fetch(sql)
if multirows:
if rows:
columns = [col for col in rows[0].keys()]
data = [dict(zip(columns, row)) for row in rows]
else:
data = []
else:
if rows:
columns = rows[0].keys()
data = dict(zip(columns, rows[0]))
else:
data = None
return data
except Exception as e:
2025-02-19 14:26:46 +01:00
logger.error(f"PostgreSQL database, error:{e}")
2025-01-27 09:39:39 +01:00
raise
async def execute(
self,
sql: str,
data: dict[str, Any] | None = None,
2025-01-27 09:39:39 +01:00
upsert: bool = False,
2025-02-19 14:26:46 +01:00
with_age: bool = False,
graph_name: str | None = None,
2025-01-27 09:39:39 +01:00
):
try:
async with self.pool.acquire() as connection: # type: ignore
2025-02-19 15:09:41 +01:00
if with_age and graph_name:
await self.configure_age(connection, graph_name) # type: ignore
elif with_age and not graph_name:
raise ValueError("Graph name is required when with_age is True")
2025-01-27 09:39:39 +01:00
if data is None:
await connection.execute(sql) # type: ignore
2025-01-27 09:39:39 +01:00
else:
await connection.execute(sql, *data.values()) # type: ignore
2025-01-27 09:39:39 +01:00
except (
asyncpg.exceptions.UniqueViolationError,
asyncpg.exceptions.DuplicateTableError,
) as e:
2025-02-19 22:52:49 +01:00
if not upsert:
logger.error(f"PostgreSQL, upsert error: {e}")
2025-01-27 09:39:39 +01:00
except Exception as e:
2025-02-19 22:52:49 +01:00
logger.error(f"PostgreSQL database, sql:{sql}, data:{data}, error:{e}")
2025-01-27 09:39:39 +01:00
raise
class ClientManager:
_instances: dict[str, Any] = {"db": None, "ref_count": 0}
_lock = asyncio.Lock()
@staticmethod
def get_config() -> dict[str, Any]:
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
return {
"host": os.environ.get(
"POSTGRES_HOST",
config.get("postgres", "host", fallback="localhost"),
),
"port": os.environ.get(
"POSTGRES_PORT", config.get("postgres", "port", fallback=5432)
),
"user": os.environ.get(
"POSTGRES_USER", config.get("postgres", "user", fallback=None)
),
"password": os.environ.get(
"POSTGRES_PASSWORD",
config.get("postgres", "password", fallback=None),
),
"database": os.environ.get(
"POSTGRES_DATABASE",
config.get("postgres", "database", fallback=None),
),
"workspace": os.environ.get(
"POSTGRES_WORKSPACE",
config.get("postgres", "workspace", fallback="default"),
),
}
@classmethod
async def get_client(cls) -> PostgreSQLDB:
async with cls._lock:
if cls._instances["db"] is None:
config = ClientManager.get_config()
db = PostgreSQLDB(config)
await db.initdb()
await db.check_tables()
cls._instances["db"] = db
cls._instances["ref_count"] = 0
cls._instances["ref_count"] += 1
return cls._instances["db"]
@classmethod
async def release_client(cls, db: PostgreSQLDB):
async with cls._lock:
if db is not None:
if db is cls._instances["db"]:
cls._instances["ref_count"] -= 1
if cls._instances["ref_count"] == 0:
await db.pool.close()
logger.info("Closed PostgreSQL database connection pool")
cls._instances["db"] = None
else:
await db.pool.close()
@final
2025-01-27 09:39:39 +01:00
@dataclass
class PGKVStorage(BaseKVStorage):
db: PostgreSQLDB = field(default=None)
2025-01-27 09:39:39 +01:00
def __post_init__(self):
self._max_batch_size = self.global_config["embedding_batch_num"]
async def initialize(self):
if self.db is None:
self.db = await ClientManager.get_client()
async def finalize(self):
if self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
2025-01-27 09:39:39 +01:00
################ QUERY METHODS ################
async def get_by_id(self, id: str) -> dict[str, Any] | None:
2025-01-27 09:39:39 +01:00
"""Get doc_full data by id."""
sql = SQL_TEMPLATES["get_by_id_" + self.namespace]
params = {"workspace": self.db.workspace, "id": id}
2025-02-08 16:05:59 +08:00
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
2025-01-27 09:39:39 +01:00
array_res = await self.db.query(sql, params, multirows=True)
res = {}
for row in array_res:
res[row["id"]] = row
2025-02-09 19:51:05 +01:00
return res if res else None
2025-01-27 09:39:39 +01:00
else:
2025-02-09 19:51:05 +01:00
response = await self.db.query(sql, params)
return response if response else None
2025-01-27 09:39:39 +01:00
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
"""Specifically for llm_response_cache."""
sql = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
params = {"workspace": self.db.workspace, mode: mode, "id": id}
2025-02-08 16:05:59 +08:00
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
2025-01-27 09:39:39 +01:00
array_res = await self.db.query(sql, params, multirows=True)
res = {}
for row in array_res:
res[row["id"]] = row
return res
else:
return None
# Query by id
2025-02-09 10:33:15 +01:00
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
2025-01-27 09:39:39 +01:00
"""Get doc_chunks data by id"""
sql = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
ids=",".join([f"'{id}'" for id in ids])
)
params = {"workspace": self.db.workspace}
2025-02-08 16:05:59 +08:00
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
2025-01-27 09:39:39 +01:00
array_res = await self.db.query(sql, params, multirows=True)
modes = set()
dict_res: dict[str, dict] = {}
for row in array_res:
modes.add(row["mode"])
for mode in modes:
if mode not in dict_res:
dict_res[mode] = {}
for row in array_res:
dict_res[row["mode"]][row["id"]] = row
2025-02-09 10:33:15 +01:00
return [{k: v} for k, v in dict_res.items()]
2025-01-27 09:39:39 +01:00
else:
2025-02-09 10:33:15 +01:00
return await self.db.query(sql, params, multirows=True)
2025-02-08 23:58:15 +01:00
2025-02-09 11:24:08 +01:00
async def get_by_status(self, status: str) -> Union[list[dict[str, Any]], None]:
"""Specifically for llm_response_cache."""
SQL = SQL_TEMPLATES["get_by_status_" + self.namespace]
params = {"workspace": self.db.workspace, "status": status}
2025-02-08 23:58:15 +01:00
return await self.db.query(SQL, params, multirows=True)
2025-01-27 09:39:39 +01:00
async def filter_keys(self, keys: set[str]) -> set[str]:
2025-01-27 09:39:39 +01:00
"""Filter out duplicated content"""
sql = SQL_TEMPLATES["filter_keys"].format(
2025-02-08 16:05:59 +08:00
table_name=namespace_to_table_name(self.namespace),
2025-01-27 09:39:39 +01:00
ids=",".join([f"'{id}'" for id in keys]),
)
params = {"workspace": self.db.workspace}
try:
res = await self.db.query(sql, params, multirows=True)
if res:
exist_keys = [key["id"] for key in res]
else:
exist_keys = []
2025-02-18 10:07:57 +01:00
new_keys = set([s for s in keys if s not in exist_keys])
return new_keys
2025-01-27 09:39:39 +01:00
except Exception as e:
2025-02-18 16:55:48 +01:00
logger.error(
f"PostgreSQL database,\nsql:{sql},\nparams:{params},\nerror:{e}"
)
raise
2025-01-27 09:39:39 +01:00
################ INSERT METHODS ################
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
2025-02-19 22:22:41 +01:00
logger.info(f"Inserting {len(data)} to {self.namespace}")
if not data:
return
2025-02-08 16:05:59 +08:00
if is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
2025-01-27 09:39:39 +01:00
pass
2025-02-08 16:05:59 +08:00
elif is_namespace(self.namespace, NameSpace.KV_STORE_FULL_DOCS):
2025-01-27 09:39:39 +01:00
for k, v in data.items():
upsert_sql = SQL_TEMPLATES["upsert_doc_full"]
_data = {
"id": k,
"content": v["content"],
"workspace": self.db.workspace,
}
await self.db.execute(upsert_sql, _data)
2025-02-08 16:05:59 +08:00
elif is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
2025-01-27 09:39:39 +01:00
for mode, items in data.items():
for k, v in items.items():
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
_data = {
"workspace": self.db.workspace,
"id": k,
"original_prompt": v["original_prompt"],
"return_value": v["return"],
"mode": mode,
}
await self.db.execute(upsert_sql, _data)
async def index_done_callback(self) -> None:
2025-02-16 16:04:07 +01:00
# PG handles persistence automatically
pass
2025-02-17 23:20:10 +01:00
2025-02-18 09:10:50 +01:00
async def drop(self) -> None:
"""Drop the storage"""
2025-02-18 09:57:10 +01:00
drop_sql = SQL_TEMPLATES["drop_all"]
2025-02-18 09:10:50 +01:00
await self.db.execute(drop_sql)
2025-02-18 10:24:19 +01:00
@final
2025-01-27 09:39:39 +01:00
@dataclass
class PGVectorStorage(BaseVectorStorage):
2025-02-19 13:42:49 +01:00
db: PostgreSQLDB | None = field(default=None)
2025-01-27 09:39:39 +01:00
def __post_init__(self):
self._max_batch_size = self.global_config["embedding_batch_num"]
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
cosine_threshold = config.get("cosine_better_than_threshold")
if cosine_threshold is None:
2025-02-13 04:12:00 +08:00
raise ValueError(
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
)
self.cosine_better_than_threshold = cosine_threshold
2025-01-27 09:39:39 +01:00
async def initialize(self):
if self.db is None:
self.db = await ClientManager.get_client()
async def finalize(self):
if self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
2025-02-19 13:42:49 +01:00
def _upsert_chunks(self, item: dict[str, Any]) -> tuple[str, dict[str, Any]]:
2025-01-27 09:39:39 +01:00
try:
upsert_sql = SQL_TEMPLATES["upsert_chunk"]
2025-02-19 13:42:49 +01:00
data: dict[str, Any] = {
2025-01-27 09:39:39 +01:00
"workspace": self.db.workspace,
"id": item["__id__"],
"tokens": item["tokens"],
"chunk_order_index": item["chunk_order_index"],
"full_doc_id": item["full_doc_id"],
"content": item["content"],
"content_vector": json.dumps(item["__vector__"].tolist()),
}
except Exception as e:
2025-02-18 16:55:48 +01:00
logger.error(f"Error to prepare upsert,\nsql: {e}\nitem: {item}")
raise
2025-01-27 09:39:39 +01:00
return upsert_sql, data
2025-02-19 13:42:49 +01:00
def _upsert_entities(self, item: dict[str, Any]) -> tuple[str, dict[str, Any]]:
2025-01-27 09:39:39 +01:00
upsert_sql = SQL_TEMPLATES["upsert_entity"]
2025-02-19 13:42:49 +01:00
data: dict[str, Any] = {
2025-01-27 09:39:39 +01:00
"workspace": self.db.workspace,
"id": item["__id__"],
"entity_name": item["entity_name"],
"content": item["content"],
"content_vector": json.dumps(item["__vector__"].tolist()),
}
return upsert_sql, data
2025-02-19 13:42:49 +01:00
def _upsert_relationships(self, item: dict[str, Any]) -> tuple[str, dict[str, Any]]:
2025-01-27 09:39:39 +01:00
upsert_sql = SQL_TEMPLATES["upsert_relationship"]
2025-02-19 13:42:49 +01:00
data: dict[str, Any] = {
2025-01-27 09:39:39 +01:00
"workspace": self.db.workspace,
"id": item["__id__"],
"source_id": item["src_id"],
"target_id": item["tgt_id"],
"content": item["content"],
"content_vector": json.dumps(item["__vector__"].tolist()),
}
return upsert_sql, data
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
2025-02-19 22:22:41 +01:00
logger.info(f"Inserting {len(data)} to {self.namespace}")
if not data:
return
2025-01-27 09:39:39 +01:00
current_time = time.time()
list_data = [
{
"__id__": k,
"__created_at__": current_time,
**{k1: v1 for k1, v1 in v.items()},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embedding_tasks = [self.embedding_func(batch) for batch in batches]
2025-01-27 09:39:39 +01:00
embeddings_list = await asyncio.gather(*embedding_tasks)
embeddings = np.concatenate(embeddings_list)
for i, d in enumerate(list_data):
d["__vector__"] = embeddings[i]
for item in list_data:
2025-02-08 16:05:59 +08:00
if is_namespace(self.namespace, NameSpace.VECTOR_STORE_CHUNKS):
2025-01-27 09:39:39 +01:00
upsert_sql, data = self._upsert_chunks(item)
2025-02-08 16:05:59 +08:00
elif is_namespace(self.namespace, NameSpace.VECTOR_STORE_ENTITIES):
2025-01-27 09:39:39 +01:00
upsert_sql, data = self._upsert_entities(item)
2025-02-08 16:05:59 +08:00
elif is_namespace(self.namespace, NameSpace.VECTOR_STORE_RELATIONSHIPS):
2025-01-27 09:39:39 +01:00
upsert_sql, data = self._upsert_relationships(item)
else:
raise ValueError(f"{self.namespace} is not supported")
await self.db.execute(upsert_sql, data)
#################### query method ###############
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
2025-01-27 09:39:39 +01:00
embeddings = await self.embedding_func([query])
embedding = embeddings[0]
embedding_string = ",".join(map(str, embedding))
sql = SQL_TEMPLATES[self.namespace].format(embedding_string=embedding_string)
params = {
"workspace": self.db.workspace,
"better_than_threshold": self.cosine_better_than_threshold,
"top_k": top_k,
}
results = await self.db.query(sql, params=params, multirows=True)
return results
2025-02-16 16:04:07 +01:00
async def index_done_callback(self) -> None:
# PG handles persistence automatically
pass
2025-02-16 16:04:35 +01:00
async def delete_entity(self, entity_name: str) -> None:
raise NotImplementedError
async def delete_entity_relation(self, entity_name: str) -> None:
raise NotImplementedError
2025-01-27 09:39:39 +01:00
2025-02-16 13:55:30 +01:00
@final
2025-01-27 09:39:39 +01:00
@dataclass
class PGDocStatusStorage(DocStatusStorage):
db: PostgreSQLDB = field(default=None)
async def initialize(self):
if self.db is None:
self.db = await ClientManager.get_client()
async def finalize(self):
if self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
async def filter_keys(self, keys: set[str]) -> set[str]:
2025-02-18 10:12:08 +01:00
"""Filter out duplicated content"""
sql = SQL_TEMPLATES["filter_keys"].format(
table_name=namespace_to_table_name(self.namespace),
ids=",".join([f"'{id}'" for id in keys]),
)
params = {"workspace": self.db.workspace}
try:
res = await self.db.query(sql, params, multirows=True)
if res:
exist_keys = [key["id"] for key in res]
else:
exist_keys = []
new_keys = set([s for s in keys if s not in exist_keys])
print(f"keys: {keys}")
print(f"new_keys: {new_keys}")
return new_keys
except Exception as e:
2025-02-18 16:55:48 +01:00
logger.error(
f"PostgreSQL database,\nsql:{sql},\nparams:{params},\nerror:{e}"
)
raise
2025-01-01 22:43:59 +08:00
2025-02-09 19:51:05 +01:00
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
sql = "select * from LIGHTRAG_DOC_STATUS where workspace=$1 and id=$2"
params = {"workspace": self.db.workspace, "id": id}
result = await self.db.query(sql, params, True)
if result is None or result == []:
2025-02-09 19:51:05 +01:00
return None
else:
return DocProcessingStatus(
2025-02-09 15:36:01 +01:00
content=result[0]["content"],
content_length=result[0]["content_length"],
content_summary=result[0]["content_summary"],
status=result[0]["status"],
chunks_count=result[0]["chunks_count"],
created_at=result[0]["created_at"],
updated_at=result[0]["updated_at"],
)
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get doc_chunks data by id"""
2025-02-19 13:50:38 +01:00
raise NotImplementedError
async def get_status_counts(self) -> dict[str, int]:
2025-01-27 09:39:39 +01:00
"""Get counts of documents in each status"""
sql = """SELECT status as "status", COUNT(1) as "count"
FROM LIGHTRAG_DOC_STATUS
where workspace=$1 GROUP BY STATUS
"""
result = await self.db.query(sql, {"workspace": self.db.workspace}, True)
counts = {}
for doc in result:
counts[doc["status"]] = doc["count"]
return counts
2025-01-01 22:43:59 +08:00
2025-01-27 09:39:39 +01:00
async def get_docs_by_status(
self, status: DocStatus
) -> dict[str, DocProcessingStatus]:
"""all documents with a specific status"""
sql = "select * from LIGHTRAG_DOC_STATUS where workspace=$1 and status=$2"
2025-02-16 15:52:59 +01:00
params = {"workspace": self.db.workspace, "status": status.value}
2025-01-27 09:39:39 +01:00
result = await self.db.query(sql, params, True)
2025-02-18 10:16:00 +01:00
docs_by_status = {
2025-01-27 09:39:39 +01:00
element["id"]: DocProcessingStatus(
2025-02-09 15:36:01 +01:00
content=result[0]["content"],
2025-01-27 09:39:39 +01:00
content_summary=element["content_summary"],
content_length=element["content_length"],
status=element["status"],
2025-02-18 16:10:26 +01:00
created_at=element["created_at"],
updated_at=element["updated_at"],
2025-01-27 09:39:39 +01:00
chunks_count=element["chunks_count"],
)
for element in result
}
2025-02-18 10:16:00 +01:00
return docs_by_status
2025-01-01 22:43:59 +08:00
async def index_done_callback(self) -> None:
2025-02-16 16:04:07 +01:00
# PG handles persistence automatically
pass
2025-01-27 09:39:39 +01:00
2025-02-16 14:50:04 +01:00
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
2025-01-27 09:39:39 +01:00
"""Update or insert document status
Args:
data: dictionary of document IDs and their status data
2025-01-27 09:39:39 +01:00
"""
2025-02-19 22:22:41 +01:00
logger.info(f"Inserting {len(data)} to {self.namespace}")
if not data:
return
sql = """insert into LIGHTRAG_DOC_STATUS(workspace,id,content,content_summary,content_length,chunks_count,status)
values($1,$2,$3,$4,$5,$6,$7)
2025-01-27 09:39:39 +01:00
on conflict(id,workspace) do update set
2025-02-09 15:36:01 +01:00
content = EXCLUDED.content,
2025-01-27 09:39:39 +01:00
content_summary = EXCLUDED.content_summary,
content_length = EXCLUDED.content_length,
chunks_count = EXCLUDED.chunks_count,
status = EXCLUDED.status,
updated_at = CURRENT_TIMESTAMP"""
for k, v in data.items():
# chunks_count is optional
await self.db.execute(
sql,
{
"workspace": self.db.workspace,
"id": k,
2025-02-09 15:36:01 +01:00
"content": v["content"],
2025-01-27 09:39:39 +01:00
"content_summary": v["content_summary"],
"content_length": v["content_length"],
"chunks_count": v["chunks_count"] if "chunks_count" in v else -1,
"status": v["status"],
},
)
2025-02-18 10:24:19 +01:00
2025-02-18 09:57:10 +01:00
async def drop(self) -> None:
"""Drop the storage"""
drop_sql = SQL_TEMPLATES["drop_doc_full"]
await self.db.execute(drop_sql)
2025-01-27 09:39:39 +01:00
2025-02-18 10:24:19 +01:00
2025-01-27 09:39:39 +01:00
class PGGraphQueryException(Exception):
"""Exception for the AGE queries."""
def __init__(self, exception: Union[str, dict[str, Any]]) -> None:
2025-01-27 09:39:39 +01:00
if isinstance(exception, dict):
self.message = exception["message"] if "message" in exception else "unknown"
self.details = exception["details"] if "details" in exception else "unknown"
else:
self.message = exception
self.details = "unknown"
def get_message(self) -> str:
return self.message
def get_details(self) -> Any:
return self.details
@final
2025-01-27 09:39:39 +01:00
@dataclass
class PGGraphStorage(BaseGraphStorage):
def __post_init__(self):
self.graph_name = self.namespace or os.environ.get("AGE_GRAPH_NAME", "lightrag")
2025-01-27 09:39:39 +01:00
self._node_embed_algorithms = {
"node2vec": self._node2vec_embed,
}
self.db: PostgreSQLDB | None = None
2025-01-27 09:39:39 +01:00
async def initialize(self):
if self.db is None:
self.db = await ClientManager.get_client()
async def finalize(self):
if self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
async def index_done_callback(self) -> None:
2025-02-16 16:04:07 +01:00
# PG handles persistence automatically
pass
2025-01-27 09:39:39 +01:00
@staticmethod
def _record_to_dict(record: asyncpg.Record) -> dict[str, Any]:
2025-01-27 09:39:39 +01:00
"""
Convert a record returned from an age query to a dictionary
Args:
record (): a record from an age query result
Returns:
dict[str, Any]: a dictionary representation of the record where
2025-01-27 09:39:39 +01:00
the dictionary key is the field name and the value is the
value converted to a python type
"""
# result holder
d = {}
# prebuild a mapping of vertex_id to vertex mappings to be used
# later to build edges
vertices = {}
for k in record.keys():
v = record[k]
# agtype comes back '{key: value}::type' which must be parsed
if isinstance(v, str) and "::" in v:
dtype = v.split("::")[-1]
v = v.split("::")[0]
if dtype == "vertex":
vertex = json.loads(v)
vertices[vertex["id"]] = vertex.get("properties")
# iterate returned fields and parse appropriately
for k in record.keys():
v = record[k]
if isinstance(v, str) and "::" in v:
dtype = v.split("::")[-1]
v = v.split("::")[0]
else:
dtype = ""
if dtype == "vertex":
vertex = json.loads(v)
field = vertex.get("properties")
if not field:
field = {}
field["label"] = PGGraphStorage._decode_graph_label(field["node_id"])
d[k] = field
# convert edge from id-label->id by replacing id with node information
# we only do this if the vertex was also returned in the query
# this is an attempt to be consistent with neo4j implementation
elif dtype == "edge":
edge = json.loads(v)
d[k] = (
vertices.get(edge["start_id"], {}),
edge[
"label"
], # we don't use decode_graph_label(), since edge label is always "DIRECTED"
vertices.get(edge["end_id"], {}),
)
else:
d[k] = json.loads(v) if isinstance(v, str) else v
return d
@staticmethod
def _format_properties(
properties: dict[str, Any], _id: Union[str, None] = None
2025-01-27 09:39:39 +01:00
) -> str:
"""
Convert a dictionary of properties to a string representation that
can be used in a cypher query insert/merge statement.
Args:
properties (dict[str,str]): a dictionary containing node/edge properties
2025-01-27 09:39:39 +01:00
_id (Union[str, None]): the id of the node or None if none exists
Returns:
str: the properties dictionary as a properly formatted string
"""
props = []
# wrap property key in backticks to escape
for k, v in properties.items():
prop = f"`{k}`: {json.dumps(v)}"
props.append(prop)
if _id is not None and "id" not in properties:
props.append(
f"id: {json.dumps(_id)}" if isinstance(_id, str) else f"id: {_id}"
)
return "{" + ", ".join(props) + "}"
@staticmethod
def _encode_graph_label(label: str) -> str:
"""
Since AGE supports only alphanumerical labels, we will encode generic label as HEX string
Args:
label (str): the original label
Returns:
str: the encoded label
"""
return "x" + label.encode().hex()
@staticmethod
def _decode_graph_label(encoded_label: str) -> str:
"""
Since AGE supports only alphanumerical labels, we will encode generic label as HEX string
Args:
encoded_label (str): the encoded label
Returns:
str: the decoded label
"""
return bytes.fromhex(encoded_label.removeprefix("x")).decode()
@staticmethod
def _get_col_name(field: str, idx: int) -> str:
"""
Convert a cypher return field to a pgsql select field
If possible keep the cypher column name, but create a generic name if necessary
Args:
field (str): a return field from a cypher query to be formatted for pgsql
idx (int): the position of the field in the return statement
Returns:
str: the field to be used in the pgsql select statement
"""
# remove white space
field = field.strip()
# if an alias is provided for the field, use it
if " as " in field:
return field.split(" as ")[-1].strip()
# if the return value is an unnamed primitive, give it a generic name
if field.isnumeric() or field in ("true", "false", "null"):
return f"column_{idx}"
# otherwise return the value stripping out some common special chars
return field.replace("(", "_").replace(")", "")
async def _query(
self,
query: str,
readonly: bool = True,
upsert: bool = False,
) -> list[dict[str, Any]]:
2025-01-27 09:39:39 +01:00
"""
Query the graph by taking a cypher query, converting it to an
age compatible query, executing it and converting the result
Args:
query (str): a cypher query to be executed
params (dict): parameters for the query
Returns:
list[dict[str, Any]]: a list of dictionaries containing the result set
2025-01-27 09:39:39 +01:00
"""
try:
if readonly:
data = await self.db.query(
query,
2025-01-27 09:39:39 +01:00
multirows=True,
2025-02-19 14:26:46 +01:00
with_age=True,
graph_name=self.graph_name,
2025-01-27 09:39:39 +01:00
)
else:
data = await self.db.execute(
query,
2025-01-27 09:39:39 +01:00
upsert=upsert,
2025-02-19 14:26:46 +01:00
with_age=True,
graph_name=self.graph_name,
2025-01-27 09:39:39 +01:00
)
2025-02-19 14:26:46 +01:00
2025-01-27 09:39:39 +01:00
except Exception as e:
raise PGGraphQueryException(
{
"message": f"Error executing graph query: {query}",
"wrapped": query,
2025-01-27 09:39:39 +01:00
"detail": str(e),
}
) from e
if data is None:
result = []
# decode records
else:
result = [self._record_to_dict(d) for d in data]
2025-01-27 09:39:39 +01:00
return result
async def has_node(self, node_id: str) -> bool:
entity_name_label = self._encode_graph_label(node_id.strip('"'))
2025-01-27 09:39:39 +01:00
query = """SELECT * FROM cypher('%s', $$
MATCH (n:Entity {node_id: "%s"})
RETURN count(n) > 0 AS node_exists
$$) AS (node_exists bool)""" % (self.graph_name, entity_name_label)
single_result = (await self._query(query))[0]
return single_result["node_exists"]
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
src_label = self._encode_graph_label(source_node_id.strip('"'))
tgt_label = self._encode_graph_label(target_node_id.strip('"'))
2025-01-27 09:39:39 +01:00
query = """SELECT * FROM cypher('%s', $$
MATCH (a:Entity {node_id: "%s"})-[r]-(b:Entity {node_id: "%s"})
RETURN COUNT(r) > 0 AS edge_exists
$$) AS (edge_exists bool)""" % (
self.graph_name,
src_label,
tgt_label,
)
single_result = (await self._query(query))[0]
2025-02-19 13:42:49 +01:00
2025-01-27 09:39:39 +01:00
return single_result["edge_exists"]
async def get_node(self, node_id: str) -> dict[str, str] | None:
label = self._encode_graph_label(node_id.strip('"'))
2025-01-27 09:39:39 +01:00
query = """SELECT * FROM cypher('%s', $$
MATCH (n:Entity {node_id: "%s"})
RETURN n
$$) AS (n agtype)""" % (self.graph_name, label)
record = await self._query(query)
if record:
node = record[0]
node_dict = node["n"]
2025-02-19 13:42:49 +01:00
2025-01-27 09:39:39 +01:00
return node_dict
return None
async def node_degree(self, node_id: str) -> int:
label = self._encode_graph_label(node_id.strip('"'))
2025-01-27 09:39:39 +01:00
query = """SELECT * FROM cypher('%s', $$
MATCH (n:Entity {node_id: "%s"})-[]->(x)
RETURN count(x) AS total_edge_count
$$) AS (total_edge_count integer)""" % (self.graph_name, label)
record = (await self._query(query))[0]
if record:
edge_count = int(record["total_edge_count"])
2025-02-19 13:42:49 +01:00
2025-01-27 09:39:39 +01:00
return edge_count
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
src_degree = await self.node_degree(src_id)
trg_degree = await self.node_degree(tgt_id)
# Convert None to 0 for addition
src_degree = 0 if src_degree is None else src_degree
trg_degree = 0 if trg_degree is None else trg_degree
degrees = int(src_degree) + int(trg_degree)
2025-02-19 13:42:49 +01:00
2025-01-27 09:39:39 +01:00
return degrees
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> dict[str, str] | None:
src_label = self._encode_graph_label(source_node_id.strip('"'))
tgt_label = self._encode_graph_label(target_node_id.strip('"'))
2025-01-27 09:39:39 +01:00
query = """SELECT * FROM cypher('%s', $$
MATCH (a:Entity {node_id: "%s"})-[r]->(b:Entity {node_id: "%s"})
RETURN properties(r) as edge_properties
LIMIT 1
$$) AS (edge_properties agtype)""" % (
self.graph_name,
src_label,
tgt_label,
)
record = await self._query(query)
if record and record[0] and record[0]["edge_properties"]:
result = record[0]["edge_properties"]
2025-02-19 13:42:49 +01:00
2025-01-27 09:39:39 +01:00
return result
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
2025-01-27 09:39:39 +01:00
"""
Retrieves all edges (relationships) for a particular node identified by its label.
:return: list of dictionaries containing edge information
2025-01-27 09:39:39 +01:00
"""
label = self._encode_graph_label(source_node_id.strip('"'))
2025-01-27 09:39:39 +01:00
query = """SELECT * FROM cypher('%s', $$
MATCH (n:Entity {node_id: "%s"})
OPTIONAL MATCH (n)-[]-(connected)
RETURN n, connected
$$) AS (n agtype, connected agtype)""" % (
2025-01-27 09:39:39 +01:00
self.graph_name,
label,
)
results = await self._query(query)
edges = []
for record in results:
source_node = record["n"] if record["n"] else None
connected_node = record["connected"] if record["connected"] else None
source_label = (
source_node["node_id"]
if source_node and source_node["node_id"]
else None
)
target_label = (
connected_node["node_id"]
if connected_node and connected_node["node_id"]
else None
)
if source_label and target_label:
edges.append(
(
self._decode_graph_label(source_label),
self._decode_graph_label(target_label),
2025-01-27 09:39:39 +01:00
)
)
return edges
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((PGGraphQueryException,)),
2025-01-27 09:36:53 +01:00
)
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
label = self._encode_graph_label(node_id.strip('"'))
2025-01-27 09:39:39 +01:00
properties = node_data
query = """SELECT * FROM cypher('%s', $$
MERGE (n:Entity {node_id: "%s"})
SET n += %s
RETURN n
$$) AS (n agtype)""" % (
self.graph_name,
label,
self._format_properties(properties),
2025-01-27 09:39:39 +01:00
)
try:
await self._query(query, readonly=False, upsert=True)
2025-02-19 13:42:49 +01:00
2025-01-27 09:39:39 +01:00
except Exception as e:
2025-02-19 13:42:49 +01:00
logger.error("POSTGRES, Error during upsert: {%s}", e)
2025-01-27 09:39:39 +01:00
raise
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((PGGraphQueryException,)),
2025-01-01 22:43:59 +08:00
)
2025-01-27 09:39:39 +01:00
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
) -> None:
2025-01-27 09:39:39 +01:00
"""
Upsert an edge and its properties between two nodes identified by their labels.
2025-01-01 22:43:59 +08:00
2025-01-27 09:39:39 +01:00
Args:
source_node_id (str): Label of the source node (used as identifier)
target_node_id (str): Label of the target node (used as identifier)
edge_data (dict): dictionary of properties to set on the edge
2025-01-27 09:39:39 +01:00
"""
src_label = self._encode_graph_label(source_node_id.strip('"'))
tgt_label = self._encode_graph_label(target_node_id.strip('"'))
2025-01-27 09:39:39 +01:00
edge_properties = edge_data
2025-01-01 22:43:59 +08:00
2025-01-27 09:39:39 +01:00
query = """SELECT * FROM cypher('%s', $$
MATCH (source:Entity {node_id: "%s"})
WITH source
MATCH (target:Entity {node_id: "%s"})
MERGE (source)-[r:DIRECTED]->(target)
SET r += %s
RETURN r
$$) AS (r agtype)""" % (
self.graph_name,
src_label,
tgt_label,
self._format_properties(edge_properties),
2025-01-27 09:39:39 +01:00
)
2025-02-19 13:42:49 +01:00
2025-01-01 22:43:59 +08:00
try:
2025-01-27 09:39:39 +01:00
await self._query(query, readonly=False, upsert=True)
2025-02-19 13:42:49 +01:00
2025-01-27 09:39:39 +01:00
except Exception as e:
logger.error("Error during edge upsert: {%s}", e)
raise
async def _node2vec_embed(self):
print("Implemented but never called.")
async def delete_node(self, node_id: str) -> None:
raise NotImplementedError
2025-02-16 13:55:30 +01:00
async def embed_nodes(
self, algorithm: str
) -> tuple[np.ndarray[Any, Any], list[str]]:
raise NotImplementedError
2025-02-16 13:55:30 +01:00
2025-02-18 10:01:21 +01:00
async def drop(self) -> None:
"""Drop the storage"""
drop_sql = SQL_TEMPLATES["drop_vdb_entity"]
await self.db.execute(drop_sql)
drop_sql = SQL_TEMPLATES["drop_vdb_relation"]
await self.db.execute(drop_sql)
2025-02-16 13:55:30 +01:00
2025-02-18 10:24:19 +01:00
2025-01-27 09:39:39 +01:00
NAMESPACE_TABLE_MAP = {
2025-02-08 16:05:59 +08:00
NameSpace.KV_STORE_FULL_DOCS: "LIGHTRAG_DOC_FULL",
NameSpace.KV_STORE_TEXT_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
NameSpace.VECTOR_STORE_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
NameSpace.VECTOR_STORE_ENTITIES: "LIGHTRAG_VDB_ENTITY",
NameSpace.VECTOR_STORE_RELATIONSHIPS: "LIGHTRAG_VDB_RELATION",
NameSpace.DOC_STATUS: "LIGHTRAG_DOC_STATUS",
NameSpace.KV_STORE_LLM_RESPONSE_CACHE: "LIGHTRAG_LLM_CACHE",
2025-01-27 09:39:39 +01:00
}
2025-01-01 22:43:59 +08:00
2025-02-08 16:05:59 +08:00
def namespace_to_table_name(namespace: str) -> str:
for k, v in NAMESPACE_TABLE_MAP.items():
if is_namespace(namespace, k):
return v
2025-01-27 09:39:39 +01:00
TABLES = {
"LIGHTRAG_DOC_FULL": {
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL (
id VARCHAR(255),
workspace VARCHAR(255),
doc_name VARCHAR(1024),
content TEXT,
meta JSONB,
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
update_time TIMESTAMP,
CONSTRAINT LIGHTRAG_DOC_FULL_PK PRIMARY KEY (workspace, id)
)"""
},
"LIGHTRAG_DOC_CHUNKS": {
"ddl": """CREATE TABLE LIGHTRAG_DOC_CHUNKS (
id VARCHAR(255),
workspace VARCHAR(255),
full_doc_id VARCHAR(256),
chunk_order_index INTEGER,
tokens INTEGER,
content TEXT,
content_vector VECTOR,
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
update_time TIMESTAMP,
CONSTRAINT LIGHTRAG_DOC_CHUNKS_PK PRIMARY KEY (workspace, id)
)"""
},
"LIGHTRAG_VDB_ENTITY": {
"ddl": """CREATE TABLE LIGHTRAG_VDB_ENTITY (
id VARCHAR(255),
workspace VARCHAR(255),
entity_name VARCHAR(255),
content TEXT,
content_vector VECTOR,
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
update_time TIMESTAMP,
CONSTRAINT LIGHTRAG_VDB_ENTITY_PK PRIMARY KEY (workspace, id)
)"""
},
"LIGHTRAG_VDB_RELATION": {
"ddl": """CREATE TABLE LIGHTRAG_VDB_RELATION (
id VARCHAR(255),
workspace VARCHAR(255),
source_id VARCHAR(256),
target_id VARCHAR(256),
content TEXT,
content_vector VECTOR,
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
update_time TIMESTAMP,
CONSTRAINT LIGHTRAG_VDB_RELATION_PK PRIMARY KEY (workspace, id)
)"""
},
"LIGHTRAG_LLM_CACHE": {
"ddl": """CREATE TABLE LIGHTRAG_LLM_CACHE (
workspace varchar(255) NOT NULL,
id varchar(255) NOT NULL,
mode varchar(32) NOT NULL,
original_prompt TEXT,
return_value TEXT,
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
update_time TIMESTAMP,
CONSTRAINT LIGHTRAG_LLM_CACHE_PK PRIMARY KEY (workspace, mode, id)
)"""
},
"LIGHTRAG_DOC_STATUS": {
"ddl": """CREATE TABLE LIGHTRAG_DOC_STATUS (
workspace varchar(255) NOT NULL,
id varchar(255) NOT NULL,
content TEXT NULL,
2025-01-27 09:39:39 +01:00
content_summary varchar(255) NULL,
content_length int4 NULL,
chunks_count int4 NULL,
status varchar(64) NULL,
created_at timestamp DEFAULT CURRENT_TIMESTAMP NULL,
updated_at timestamp DEFAULT CURRENT_TIMESTAMP NULL,
CONSTRAINT LIGHTRAG_DOC_STATUS_PK PRIMARY KEY (workspace, id)
)"""
},
}
2025-01-01 22:43:59 +08:00
2025-01-27 09:39:39 +01:00
SQL_TEMPLATES = {
# SQL for KVStorage
"get_by_id_full_docs": """SELECT id, COALESCE(content, '') as content
FROM LIGHTRAG_DOC_FULL WHERE workspace=$1 AND id=$2
""",
"get_by_id_text_chunks": """SELECT id, tokens, COALESCE(content, '') as content,
chunk_order_index, full_doc_id
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=$1 AND id=$2
""",
"get_by_id_llm_response_cache": """SELECT id, original_prompt, COALESCE(return_value, '') as "return", mode
FROM LIGHTRAG_LLM_CACHE WHERE workspace=$1 AND mode=$2
""",
"get_by_mode_id_llm_response_cache": """SELECT id, original_prompt, COALESCE(return_value, '') as "return", mode
FROM LIGHTRAG_LLM_CACHE WHERE workspace=$1 AND mode=$2 AND id=$3
""",
"get_by_ids_full_docs": """SELECT id, COALESCE(content, '') as content
FROM LIGHTRAG_DOC_FULL WHERE workspace=$1 AND id IN ({ids})
""",
"get_by_ids_text_chunks": """SELECT id, tokens, COALESCE(content, '') as content,
chunk_order_index, full_doc_id
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=$1 AND id IN ({ids})
""",
"get_by_ids_llm_response_cache": """SELECT id, original_prompt, COALESCE(return_value, '') as "return", mode
FROM LIGHTRAG_LLM_CACHE WHERE workspace=$1 AND mode= IN ({ids})
""",
"filter_keys": "SELECT id FROM {table_name} WHERE workspace=$1 AND id IN ({ids})",
"upsert_doc_full": """INSERT INTO LIGHTRAG_DOC_FULL (id, content, workspace)
VALUES ($1, $2, $3)
ON CONFLICT (workspace,id) DO UPDATE
SET content = $2, update_time = CURRENT_TIMESTAMP
""",
"upsert_llm_response_cache": """INSERT INTO LIGHTRAG_LLM_CACHE(workspace,id,original_prompt,return_value,mode)
VALUES ($1, $2, $3, $4, $5)
ON CONFLICT (workspace,mode,id) DO UPDATE
SET original_prompt = EXCLUDED.original_prompt,
return_value=EXCLUDED.return_value,
mode=EXCLUDED.mode,
update_time = CURRENT_TIMESTAMP
""",
"upsert_chunk": """INSERT INTO LIGHTRAG_DOC_CHUNKS (workspace, id, tokens,
chunk_order_index, full_doc_id, content, content_vector)
VALUES ($1, $2, $3, $4, $5, $6, $7)
ON CONFLICT (workspace,id) DO UPDATE
SET tokens=EXCLUDED.tokens,
chunk_order_index=EXCLUDED.chunk_order_index,
full_doc_id=EXCLUDED.full_doc_id,
content = EXCLUDED.content,
content_vector=EXCLUDED.content_vector,
update_time = CURRENT_TIMESTAMP
""",
"upsert_entity": """INSERT INTO LIGHTRAG_VDB_ENTITY (workspace, id, entity_name, content, content_vector)
VALUES ($1, $2, $3, $4, $5)
ON CONFLICT (workspace,id) DO UPDATE
SET entity_name=EXCLUDED.entity_name,
content=EXCLUDED.content,
content_vector=EXCLUDED.content_vector,
update_time=CURRENT_TIMESTAMP
""",
"upsert_relationship": """INSERT INTO LIGHTRAG_VDB_RELATION (workspace, id, source_id,
target_id, content, content_vector)
VALUES ($1, $2, $3, $4, $5, $6)
ON CONFLICT (workspace,id) DO UPDATE
SET source_id=EXCLUDED.source_id,
target_id=EXCLUDED.target_id,
content=EXCLUDED.content,
content_vector=EXCLUDED.content_vector, update_time = CURRENT_TIMESTAMP
""",
# SQL for VectorStorage
"entities": """SELECT entity_name FROM
(SELECT id, entity_name, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
FROM LIGHTRAG_VDB_ENTITY where workspace=$1)
WHERE distance>$2 ORDER BY distance DESC LIMIT $3
""",
"relationships": """SELECT source_id as src_id, target_id as tgt_id FROM
(SELECT id, source_id,target_id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
FROM LIGHTRAG_VDB_RELATION where workspace=$1)
WHERE distance>$2 ORDER BY distance DESC LIMIT $3
""",
"chunks": """SELECT id FROM
(SELECT id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
FROM LIGHTRAG_DOC_CHUNKS where workspace=$1)
WHERE distance>$2 ORDER BY distance DESC LIMIT $3
""",
2025-02-18 09:57:10 +01:00
# DROP tables
"drop_all": """
2025-02-18 09:10:50 +01:00
DROP TABLE IF EXISTS LIGHTRAG_DOC_FULL CASCADE;
DROP TABLE IF EXISTS LIGHTRAG_DOC_CHUNKS CASCADE;
DROP TABLE IF EXISTS LIGHTRAG_LLM_CACHE CASCADE;
DROP TABLE IF EXISTS LIGHTRAG_VDB_ENTITY CASCADE;
DROP TABLE IF EXISTS LIGHTRAG_VDB_RELATION CASCADE;
""",
2025-02-18 09:57:10 +01:00
"drop_doc_full": """
DROP TABLE IF EXISTS LIGHTRAG_DOC_FULL CASCADE;
""",
"drop_doc_chunks": """
DROP TABLE IF EXISTS LIGHTRAG_DOC_CHUNKS CASCADE;
""",
"drop_llm_cache": """
DROP TABLE IF EXISTS LIGHTRAG_LLM_CACHE CASCADE;
""",
"drop_vdb_entity": """
DROP TABLE IF EXISTS LIGHTRAG_VDB_ENTITY CASCADE;
""",
"drop_vdb_relation": """
DROP TABLE IF EXISTS LIGHTRAG_VDB_RELATION CASCADE;
""",
2025-01-27 09:39:39 +01:00
}