mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-06-26 22:00:19 +00:00
282 lines
10 KiB
Markdown
282 lines
10 KiB
Markdown
![]() |
# LightRAG Multi-Document Processing: Concurrent Control Strategy Analysis
|
|||
|
|
|||
|
LightRAG employs a multi-layered concurrent control strategy when processing multiple documents. This article provides an in-depth analysis of the concurrent control mechanisms at document level, chunk level, and LLM request level, helping you understand why specific concurrent behaviors occur.
|
|||
|
|
|||
|
## Overview
|
|||
|
|
|||
|
LightRAG's concurrent control is divided into three layers:
|
|||
|
|
|||
|
1. **Document-level concurrency**: Controls the number of documents processed simultaneously
|
|||
|
2. **Chunk-level concurrency**: Controls the number of chunks processed simultaneously within a single document
|
|||
|
3. **LLM request-level concurrency**: Controls the global concurrent number of LLM requests
|
|||
|
|
|||
|
## 1. Document-Level Concurrent Control
|
|||
|
|
|||
|
**Control Parameter**: `max_parallel_insert`
|
|||
|
|
|||
|
Document-level concurrency is controlled by the `max_parallel_insert` parameter, with a default value of 2.
|
|||
|
|
|||
|
```python
|
|||
|
# lightrag/lightrag.py
|
|||
|
max_parallel_insert: int = field(default=int(os.getenv("MAX_PARALLEL_INSERT", 2)))
|
|||
|
```
|
|||
|
|
|||
|
### Implementation Mechanism
|
|||
|
|
|||
|
In the `apipeline_process_enqueue_documents` method, a semaphore is used to control document concurrency:
|
|||
|
|
|||
|
```python
|
|||
|
# lightrag/lightrag.py - apipeline_process_enqueue_documents method
|
|||
|
async def process_document(
|
|||
|
doc_id: str,
|
|||
|
status_doc: DocProcessingStatus,
|
|||
|
split_by_character: str | None,
|
|||
|
split_by_character_only: bool,
|
|||
|
pipeline_status: dict,
|
|||
|
pipeline_status_lock: asyncio.Lock,
|
|||
|
semaphore: asyncio.Semaphore, # Document-level semaphore
|
|||
|
) -> None:
|
|||
|
"""Process single document"""
|
|||
|
async with semaphore: # 🔥 Document-level concurrent control
|
|||
|
# ... Process all chunks of a single document
|
|||
|
|
|||
|
# Create document-level semaphore
|
|||
|
semaphore = asyncio.Semaphore(self.max_parallel_insert) # Default 2
|
|||
|
|
|||
|
# Create processing tasks for each document
|
|||
|
doc_tasks = []
|
|||
|
for doc_id, status_doc in to_process_docs.items():
|
|||
|
doc_tasks.append(
|
|||
|
process_document(
|
|||
|
doc_id, status_doc, split_by_character, split_by_character_only,
|
|||
|
pipeline_status, pipeline_status_lock, semaphore
|
|||
|
)
|
|||
|
)
|
|||
|
|
|||
|
# Wait for all documents to complete processing
|
|||
|
await asyncio.gather(*doc_tasks)
|
|||
|
```
|
|||
|
|
|||
|
## 2. Chunk-Level Concurrent Control
|
|||
|
|
|||
|
**Control Parameter**: `llm_model_max_async`
|
|||
|
|
|||
|
**Key Point**: Each document independently creates its own chunk semaphore!
|
|||
|
|
|||
|
```python
|
|||
|
# lightrag/lightrag.py
|
|||
|
llm_model_max_async: int = field(default=int(os.getenv("MAX_ASYNC", 4)))
|
|||
|
```
|
|||
|
|
|||
|
### Implementation Mechanism
|
|||
|
|
|||
|
In the `extract_entities` function, **each document independently creates** its own chunk semaphore:
|
|||
|
|
|||
|
```python
|
|||
|
# lightrag/operate.py - extract_entities function
|
|||
|
async def extract_entities(chunks: dict[str, TextChunkSchema], global_config: dict[str, str], ...):
|
|||
|
# 🔥 Key: Each document independently creates this semaphore!
|
|||
|
llm_model_max_async = global_config.get("llm_model_max_async", 4)
|
|||
|
semaphore = asyncio.Semaphore(llm_model_max_async) # Chunk semaphore for each document
|
|||
|
|
|||
|
async def _process_with_semaphore(chunk):
|
|||
|
async with semaphore: # 🔥 Chunk concurrent control within document
|
|||
|
return await _process_single_content(chunk)
|
|||
|
|
|||
|
# Create tasks for each chunk
|
|||
|
tasks = []
|
|||
|
for c in ordered_chunks:
|
|||
|
task = asyncio.create_task(_process_with_semaphore(c))
|
|||
|
tasks.append(task)
|
|||
|
|
|||
|
# Wait for all chunks to complete processing
|
|||
|
done, pending = await asyncio.wait(tasks, return_when=asyncio.FIRST_EXCEPTION)
|
|||
|
chunk_results = [task.result() for task in tasks]
|
|||
|
return chunk_results
|
|||
|
```
|
|||
|
|
|||
|
### Important Inference: System Overall Chunk Concurrency
|
|||
|
|
|||
|
Since each document independently creates chunk semaphores, the theoretical chunk concurrency of the system is:
|
|||
|
|
|||
|
**Theoretical Chunk Concurrency = max_parallel_insert × llm_model_max_async**
|
|||
|
|
|||
|
For example:
|
|||
|
- `max_parallel_insert = 2` (process 2 documents simultaneously)
|
|||
|
- `llm_model_max_async = 4` (maximum 4 chunk concurrency per document)
|
|||
|
- **Theoretical result**: Maximum 2 × 4 = 8 chunks simultaneously in "processing" state
|
|||
|
|
|||
|
## 3. LLM Request-Level Concurrent Control (The Real Bottleneck)
|
|||
|
|
|||
|
**Control Parameter**: `llm_model_max_async` (globally shared)
|
|||
|
|
|||
|
**Key**: Although there might be 8 chunks "in processing", all LLM requests share the same global priority queue!
|
|||
|
|
|||
|
```python
|
|||
|
# lightrag/lightrag.py - __post_init__ method
|
|||
|
self.llm_model_func = priority_limit_async_func_call(self.llm_model_max_async)(
|
|||
|
partial(
|
|||
|
self.llm_model_func,
|
|||
|
hashing_kv=hashing_kv,
|
|||
|
**self.llm_model_kwargs,
|
|||
|
)
|
|||
|
)
|
|||
|
# 🔥 Global LLM queue size = llm_model_max_async = 4
|
|||
|
```
|
|||
|
|
|||
|
### Priority Queue Implementation
|
|||
|
|
|||
|
```python
|
|||
|
# lightrag/utils.py - priority_limit_async_func_call function
|
|||
|
def priority_limit_async_func_call(max_size: int, max_queue_size: int = 1000):
|
|||
|
def final_decro(func):
|
|||
|
queue = asyncio.PriorityQueue(maxsize=max_queue_size)
|
|||
|
tasks = set()
|
|||
|
|
|||
|
async def worker():
|
|||
|
"""Worker that processes tasks in the priority queue"""
|
|||
|
while not shutdown_event.is_set():
|
|||
|
try:
|
|||
|
priority, count, future, args, kwargs = await asyncio.wait_for(queue.get(), timeout=1.0)
|
|||
|
result = await func(*args, **kwargs) # 🔥 Actual LLM call
|
|||
|
if not future.done():
|
|||
|
future.set_result(result)
|
|||
|
except Exception as e:
|
|||
|
# Error handling...
|
|||
|
finally:
|
|||
|
queue.task_done()
|
|||
|
|
|||
|
# 🔥 Create fixed number of workers (max_size), this is the real concurrency limit
|
|||
|
for _ in range(max_size):
|
|||
|
task = asyncio.create_task(worker())
|
|||
|
tasks.add(task)
|
|||
|
```
|
|||
|
|
|||
|
## 4. Chunk Internal Processing Mechanism (Serial)
|
|||
|
|
|||
|
### Why Serial?
|
|||
|
|
|||
|
Internal processing of each chunk strictly follows this serial execution order:
|
|||
|
|
|||
|
```python
|
|||
|
# lightrag/operate.py - _process_single_content function
|
|||
|
async def _process_single_content(chunk_key_dp: tuple[str, TextChunkSchema]):
|
|||
|
# Step 1: Initial entity extraction
|
|||
|
hint_prompt = entity_extract_prompt.format(**{**context_base, "input_text": content})
|
|||
|
final_result = await use_llm_func_with_cache(hint_prompt, use_llm_func, ...)
|
|||
|
|
|||
|
# Process initial extraction results
|
|||
|
maybe_nodes, maybe_edges = await _process_extraction_result(final_result, chunk_key, file_path)
|
|||
|
|
|||
|
# Step 2: Gleaning phase
|
|||
|
for now_glean_index in range(entity_extract_max_gleaning):
|
|||
|
# 🔥 Serial wait for gleaning results
|
|||
|
glean_result = await use_llm_func_with_cache(
|
|||
|
continue_prompt, use_llm_func,
|
|||
|
llm_response_cache=llm_response_cache,
|
|||
|
history_messages=history, cache_type="extract"
|
|||
|
)
|
|||
|
|
|||
|
# Process gleaning results
|
|||
|
glean_nodes, glean_edges = await _process_extraction_result(glean_result, chunk_key, file_path)
|
|||
|
|
|||
|
# Merge results...
|
|||
|
|
|||
|
# Step 3: Determine whether to continue loop
|
|||
|
if now_glean_index == entity_extract_max_gleaning - 1:
|
|||
|
break
|
|||
|
|
|||
|
# 🔥 Serial wait for loop decision results
|
|||
|
if_loop_result = await use_llm_func_with_cache(
|
|||
|
if_loop_prompt, use_llm_func,
|
|||
|
llm_response_cache=llm_response_cache,
|
|||
|
history_messages=history, cache_type="extract"
|
|||
|
)
|
|||
|
|
|||
|
if if_loop_result.strip().strip('"').strip("'").lower() != "yes":
|
|||
|
break
|
|||
|
|
|||
|
return maybe_nodes, maybe_edges
|
|||
|
```
|
|||
|
|
|||
|
## 5. Complete Concurrent Hierarchy Diagram
|
|||
|

|
|||
|
|
|||
|
### Chunk Internal Processing (Serial)
|
|||
|
```
|
|||
|
Initial Extraction → Gleaning → Loop Decision → Complete
|
|||
|
```
|
|||
|
|
|||
|
## 6. Real-World Scenario Analysis
|
|||
|
|
|||
|
### Scenario 1: Single Document with Multiple Chunks
|
|||
|
Assume 1 document with 6 chunks:
|
|||
|
|
|||
|
- **Document level**: Only 1 document, not limited by `max_parallel_insert`
|
|||
|
- **Chunk level**: Maximum 4 chunks processed simultaneously (limited by `llm_model_max_async=4`)
|
|||
|
- **LLM level**: Global maximum 4 LLM requests concurrent
|
|||
|
|
|||
|
**Expected behavior**: 4 chunks process concurrently, remaining 2 chunks wait.
|
|||
|
|
|||
|
### Scenario 2: Multiple Documents with Multiple Chunks
|
|||
|
Assume 3 documents, each with 10 chunks:
|
|||
|
|
|||
|
- **Document level**: Maximum 2 documents processed simultaneously
|
|||
|
- **Chunk level**: Maximum 4 chunks per document processed simultaneously
|
|||
|
- **Theoretical Chunk concurrency**: 2 × 4 = 8 chunks processed simultaneously
|
|||
|
- **Actual LLM concurrency**: Only 4 LLM requests actually execute
|
|||
|
|
|||
|
**Actual state distribution**:
|
|||
|
```
|
|||
|
# Possible system state:
|
|||
|
Document 1: 4 chunks "processing" (2 executing LLM, 2 waiting for LLM response)
|
|||
|
Document 2: 4 chunks "processing" (2 executing LLM, 2 waiting for LLM response)
|
|||
|
Document 3: Waiting for document-level semaphore
|
|||
|
|
|||
|
Total:
|
|||
|
- 8 chunks in "processing" state
|
|||
|
- 4 LLM requests actually executing
|
|||
|
- 4 chunks waiting for LLM response
|
|||
|
```
|
|||
|
|
|||
|
## 7. Performance Optimization Recommendations
|
|||
|
|
|||
|
### Understanding the Bottleneck
|
|||
|
|
|||
|
The real bottleneck is the global LLM queue, not the chunk semaphores!
|
|||
|
|
|||
|
### Adjustment Strategies
|
|||
|
|
|||
|
**Strategy 1: Increase LLM Concurrent Capacity**
|
|||
|
|
|||
|
```bash
|
|||
|
# Environment variable configuration
|
|||
|
export MAX_PARALLEL_INSERT=2 # Keep document concurrency
|
|||
|
export MAX_ASYNC=8 # 🔥 Increase LLM request concurrency
|
|||
|
```
|
|||
|
|
|||
|
**Strategy 2: Balance Document and LLM Concurrency**
|
|||
|
|
|||
|
```python
|
|||
|
rag = LightRAG(
|
|||
|
max_parallel_insert=3, # Moderately increase document concurrency
|
|||
|
llm_model_max_async=12, # Significantly increase LLM concurrency
|
|||
|
entity_extract_max_gleaning=0, # Reduce serial steps within chunks
|
|||
|
)
|
|||
|
```
|
|||
|
|
|||
|
## 8. Summary
|
|||
|
|
|||
|
Key characteristics of LightRAG's multi-document concurrent processing mechanism:
|
|||
|
|
|||
|
### Concurrent Layers
|
|||
|
1. **Inter-document competition**: Controlled by `max_parallel_insert`, default 2 documents concurrent
|
|||
|
2. **Theoretical Chunk concurrency**: Each document independently creates semaphores, total = max_parallel_insert × llm_model_max_async
|
|||
|
3. **Actual LLM concurrency**: All chunks share global LLM queue, controlled by `llm_model_max_async`
|
|||
|
4. **Intra-chunk serial**: Multiple LLM requests within each chunk execute strictly serially
|
|||
|
|
|||
|
### Key Insights
|
|||
|
- **Theoretical vs Actual**: System may have many chunks "in processing", but only few are actually executing LLM requests
|
|||
|
- **Real Bottleneck**: Global LLM request queue is the performance bottleneck, not chunk semaphores
|
|||
|
- **Optimization Focus**: Increasing `llm_model_max_async` is more effective than increasing `max_parallel_insert`
|