2024-12-22 00:38:38 +01:00
|
|
|
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
|
|
|
|
from pydantic import BaseModel
|
|
|
|
import logging
|
|
|
|
import argparse
|
|
|
|
from lightrag import LightRAG, QueryParam
|
|
|
|
from lightrag.llm import lollms_model_complete, lollms_embed
|
2025-01-10 20:30:58 +01:00
|
|
|
from lightrag.llm import ollama_model_complete, ollama_embed
|
|
|
|
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
|
|
|
from lightrag.llm import azure_openai_complete_if_cache, azure_openai_embedding
|
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
from lightrag.utils import EmbeddingFunc
|
|
|
|
from typing import Optional, List
|
|
|
|
from enum import Enum
|
|
|
|
from pathlib import Path
|
|
|
|
import shutil
|
|
|
|
import aiofiles
|
|
|
|
from ascii_colors import trace_exception
|
2025-01-04 02:21:37 +01:00
|
|
|
import os
|
2024-12-22 00:38:38 +01:00
|
|
|
|
2025-01-04 02:23:39 +01:00
|
|
|
from fastapi import Depends, Security
|
2025-01-04 02:21:37 +01:00
|
|
|
from fastapi.security import APIKeyHeader
|
|
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
|
|
|
|
from starlette.status import HTTP_403_FORBIDDEN
|
2025-01-04 02:23:39 +01:00
|
|
|
|
2025-01-10 20:30:58 +01:00
|
|
|
def get_default_host(binding_type: str) -> str:
|
|
|
|
default_hosts = {
|
|
|
|
"ollama": "http://localhost:11434",
|
|
|
|
"lollms": "http://localhost:9600",
|
|
|
|
"azure_openai": "https://api.openai.com/v1",
|
|
|
|
"openai": "https://api.openai.com/v1"
|
|
|
|
}
|
|
|
|
return default_hosts.get(binding_type, "http://localhost:11434") # fallback to ollama if unknown
|
2024-12-22 00:38:38 +01:00
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
parser = argparse.ArgumentParser(
|
|
|
|
description="LightRAG FastAPI Server with separate working and input directories"
|
|
|
|
)
|
|
|
|
|
2025-01-10 20:30:58 +01:00
|
|
|
#Start by the bindings
|
|
|
|
parser.add_argument(
|
|
|
|
"--llm-binding",
|
|
|
|
default="ollama",
|
|
|
|
help="LLM binding to be used. Supported: lollms, ollama, openai (default: ollama)",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--embedding-binding",
|
|
|
|
default="ollama",
|
|
|
|
help="Embedding binding to be used. Supported: lollms, ollama, openai (default: ollama)",
|
|
|
|
)
|
|
|
|
|
|
|
|
# Parse just these arguments first
|
|
|
|
temp_args, _ = parser.parse_known_args()
|
|
|
|
|
|
|
|
# Add remaining arguments with dynamic defaults for hosts
|
2024-12-22 00:38:38 +01:00
|
|
|
# Server configuration
|
|
|
|
parser.add_argument(
|
|
|
|
"--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)"
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--port", type=int, default=9621, help="Server port (default: 9621)"
|
|
|
|
)
|
|
|
|
|
|
|
|
# Directory configuration
|
|
|
|
parser.add_argument(
|
|
|
|
"--working-dir",
|
|
|
|
default="./rag_storage",
|
|
|
|
help="Working directory for RAG storage (default: ./rag_storage)",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--input-dir",
|
|
|
|
default="./inputs",
|
|
|
|
help="Directory containing input documents (default: ./inputs)",
|
|
|
|
)
|
|
|
|
|
2025-01-10 20:30:58 +01:00
|
|
|
# LLM Model configuration
|
|
|
|
default_llm_host = get_default_host(temp_args.llm_binding)
|
2024-12-22 00:38:38 +01:00
|
|
|
parser.add_argument(
|
2025-01-10 20:30:58 +01:00
|
|
|
"--llm-binding-host",
|
|
|
|
default=default_llm_host,
|
|
|
|
help=f"llm server host URL (default: {default_llm_host})",
|
|
|
|
)
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--llm-model",
|
2024-12-22 00:38:38 +01:00
|
|
|
default="mistral-nemo:latest",
|
|
|
|
help="LLM model name (default: mistral-nemo:latest)",
|
|
|
|
)
|
2025-01-10 20:30:58 +01:00
|
|
|
|
|
|
|
# Embedding model configuration
|
|
|
|
default_embedding_host = get_default_host(temp_args.embedding_binding)
|
|
|
|
parser.add_argument(
|
|
|
|
"--embedding-binding-host",
|
|
|
|
default=default_embedding_host,
|
|
|
|
help=f"embedding server host URL (default: {default_embedding_host})",
|
|
|
|
)
|
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
parser.add_argument(
|
|
|
|
"--embedding-model",
|
|
|
|
default="bge-m3:latest",
|
|
|
|
help="Embedding model name (default: bge-m3:latest)",
|
|
|
|
)
|
|
|
|
|
2025-01-10 22:17:13 +01:00
|
|
|
def timeout_type(value):
|
|
|
|
if value is None or value == "None":
|
|
|
|
return None
|
|
|
|
return int(value)
|
|
|
|
|
2025-01-10 21:39:25 +01:00
|
|
|
parser.add_argument(
|
|
|
|
"--timeout",
|
2025-01-10 22:17:13 +01:00
|
|
|
default=None,
|
|
|
|
type=timeout_type,
|
|
|
|
help="Timeout in seconds (useful when using slow AI). Use None for infinite timeout",
|
2025-01-10 21:39:25 +01:00
|
|
|
)
|
2024-12-22 00:38:38 +01:00
|
|
|
# RAG configuration
|
|
|
|
parser.add_argument(
|
|
|
|
"--max-async", type=int, default=4, help="Maximum async operations (default: 4)"
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--max-tokens",
|
|
|
|
type=int,
|
|
|
|
default=32768,
|
|
|
|
help="Maximum token size (default: 32768)",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--embedding-dim",
|
|
|
|
type=int,
|
|
|
|
default=1024,
|
|
|
|
help="Embedding dimensions (default: 1024)",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--max-embed-tokens",
|
|
|
|
type=int,
|
|
|
|
default=8192,
|
|
|
|
help="Maximum embedding token size (default: 8192)",
|
|
|
|
)
|
|
|
|
|
|
|
|
# Logging configuration
|
|
|
|
parser.add_argument(
|
|
|
|
"--log-level",
|
|
|
|
default="INFO",
|
|
|
|
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
|
|
|
|
help="Logging level (default: INFO)",
|
|
|
|
)
|
|
|
|
|
2025-01-04 02:23:39 +01:00
|
|
|
parser.add_argument(
|
|
|
|
"--key",
|
|
|
|
type=str,
|
|
|
|
help="API key for authentication. This protects lightrag server against unauthorized access",
|
|
|
|
default=None,
|
|
|
|
)
|
2025-01-04 02:21:37 +01:00
|
|
|
|
2025-01-10 21:39:25 +01:00
|
|
|
# Optional https parameters
|
|
|
|
parser.add_argument(
|
|
|
|
"--ssl",
|
|
|
|
action="store_true",
|
|
|
|
help="Enable HTTPS (default: False)"
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--ssl-certfile",
|
|
|
|
default=None,
|
|
|
|
help="Path to SSL certificate file (required if --ssl is enabled)"
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--ssl-keyfile",
|
|
|
|
default=None,
|
|
|
|
help="Path to SSL private key file (required if --ssl is enabled)"
|
|
|
|
)
|
2024-12-22 00:38:38 +01:00
|
|
|
return parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
class DocumentManager:
|
|
|
|
"""Handles document operations and tracking"""
|
|
|
|
|
|
|
|
def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")):
|
|
|
|
self.input_dir = Path(input_dir)
|
|
|
|
self.supported_extensions = supported_extensions
|
|
|
|
self.indexed_files = set()
|
|
|
|
|
|
|
|
# Create input directory if it doesn't exist
|
|
|
|
self.input_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
def scan_directory(self) -> List[Path]:
|
|
|
|
"""Scan input directory for new files"""
|
|
|
|
new_files = []
|
|
|
|
for ext in self.supported_extensions:
|
|
|
|
for file_path in self.input_dir.rglob(f"*{ext}"):
|
|
|
|
if file_path not in self.indexed_files:
|
|
|
|
new_files.append(file_path)
|
|
|
|
return new_files
|
|
|
|
|
|
|
|
def mark_as_indexed(self, file_path: Path):
|
|
|
|
"""Mark a file as indexed"""
|
|
|
|
self.indexed_files.add(file_path)
|
|
|
|
|
|
|
|
def is_supported_file(self, filename: str) -> bool:
|
|
|
|
"""Check if file type is supported"""
|
|
|
|
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
|
|
|
|
|
|
|
|
|
|
|
|
# Pydantic models
|
|
|
|
class SearchMode(str, Enum):
|
|
|
|
naive = "naive"
|
|
|
|
local = "local"
|
|
|
|
global_ = "global"
|
|
|
|
hybrid = "hybrid"
|
|
|
|
|
|
|
|
|
|
|
|
class QueryRequest(BaseModel):
|
|
|
|
query: str
|
|
|
|
mode: SearchMode = SearchMode.hybrid
|
|
|
|
stream: bool = False
|
2024-12-26 23:32:02 +01:00
|
|
|
only_need_context: bool = False
|
2024-12-22 00:38:38 +01:00
|
|
|
|
|
|
|
|
|
|
|
class QueryResponse(BaseModel):
|
|
|
|
response: str
|
|
|
|
|
|
|
|
|
|
|
|
class InsertTextRequest(BaseModel):
|
|
|
|
text: str
|
|
|
|
description: Optional[str] = None
|
|
|
|
|
|
|
|
|
|
|
|
class InsertResponse(BaseModel):
|
|
|
|
status: str
|
|
|
|
message: str
|
|
|
|
document_count: int
|
|
|
|
|
2025-01-04 02:23:39 +01:00
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
def get_api_key_dependency(api_key: Optional[str]):
|
|
|
|
if not api_key:
|
|
|
|
# If no API key is configured, return a dummy dependency that always succeeds
|
|
|
|
async def no_auth():
|
|
|
|
return None
|
2025-01-04 02:23:39 +01:00
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
return no_auth
|
2025-01-04 02:23:39 +01:00
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
# If API key is configured, use proper authentication
|
|
|
|
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
|
2025-01-04 02:23:39 +01:00
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
async def api_key_auth(api_key_header_value: str | None = Security(api_key_header)):
|
|
|
|
if not api_key_header_value:
|
|
|
|
raise HTTPException(
|
2025-01-04 02:23:39 +01:00
|
|
|
status_code=HTTP_403_FORBIDDEN, detail="API Key required"
|
2025-01-04 02:21:37 +01:00
|
|
|
)
|
|
|
|
if api_key_header_value != api_key:
|
|
|
|
raise HTTPException(
|
2025-01-04 02:23:39 +01:00
|
|
|
status_code=HTTP_403_FORBIDDEN, detail="Invalid API Key"
|
2025-01-04 02:21:37 +01:00
|
|
|
)
|
|
|
|
return api_key_header_value
|
2025-01-04 02:23:39 +01:00
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
return api_key_auth
|
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
|
|
|
|
def create_app(args):
|
2025-01-10 20:30:58 +01:00
|
|
|
# Verify that bindings arer correctly setup
|
|
|
|
if args.llm_binding not in ["lollms", "ollama", "openai"]:
|
|
|
|
raise Exception("llm binding not supported")
|
|
|
|
|
|
|
|
if args.embedding_binding not in ["lollms", "ollama", "openai"]:
|
|
|
|
raise Exception("embedding binding not supported")
|
|
|
|
|
|
|
|
|
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
# Setup logging
|
|
|
|
logging.basicConfig(
|
|
|
|
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
|
|
|
|
)
|
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
# Check if API key is provided either through env var or args
|
|
|
|
api_key = os.getenv("LIGHTRAG_API_KEY") or args.key
|
2025-01-04 02:23:39 +01:00
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
# Initialize FastAPI
|
2024-12-22 00:38:38 +01:00
|
|
|
app = FastAPI(
|
|
|
|
title="LightRAG API",
|
2025-01-04 02:23:39 +01:00
|
|
|
description="API for querying text using LightRAG with separate storage and input directories"
|
|
|
|
+ "(With authentication)"
|
|
|
|
if api_key
|
|
|
|
else "",
|
2025-01-10 20:30:58 +01:00
|
|
|
version="1.0.1",
|
2025-01-04 02:23:39 +01:00
|
|
|
openapi_tags=[{"name": "api"}],
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
2025-01-04 02:23:39 +01:00
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
# Add CORS middleware
|
|
|
|
app.add_middleware(
|
|
|
|
CORSMiddleware,
|
|
|
|
allow_origins=["*"],
|
|
|
|
allow_credentials=True,
|
|
|
|
allow_methods=["*"],
|
|
|
|
allow_headers=["*"],
|
|
|
|
)
|
|
|
|
|
|
|
|
# Create the optional API key dependency
|
|
|
|
optional_api_key = get_api_key_dependency(api_key)
|
2024-12-22 00:38:38 +01:00
|
|
|
|
|
|
|
# Create working directory if it doesn't exist
|
|
|
|
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
# Initialize document manager
|
|
|
|
doc_manager = DocumentManager(args.input_dir)
|
|
|
|
|
2025-01-10 20:30:58 +01:00
|
|
|
|
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
# Initialize RAG
|
|
|
|
rag = LightRAG(
|
|
|
|
working_dir=args.working_dir,
|
2025-01-10 20:30:58 +01:00
|
|
|
llm_model_func=lollms_model_complete if args.llm_binding=="lollms" else ollama_model_complete if args.llm_binding=="ollama" else azure_openai_complete_if_cache if args.llm_binding=="azure_openai" else openai_complete_if_cache,
|
|
|
|
llm_model_name=args.llm_model,
|
2024-12-22 00:38:38 +01:00
|
|
|
llm_model_max_async=args.max_async,
|
|
|
|
llm_model_max_token_size=args.max_tokens,
|
|
|
|
llm_model_kwargs={
|
2025-01-10 20:30:58 +01:00
|
|
|
"host": args.llm_binding_host,
|
2025-01-10 21:39:41 +01:00
|
|
|
"timeout":args.timeout,
|
2024-12-22 00:38:38 +01:00
|
|
|
"options": {"num_ctx": args.max_tokens},
|
|
|
|
},
|
|
|
|
embedding_func=EmbeddingFunc(
|
|
|
|
embedding_dim=args.embedding_dim,
|
|
|
|
max_token_size=args.max_embed_tokens,
|
|
|
|
func=lambda texts: lollms_embed(
|
2025-01-10 20:30:58 +01:00
|
|
|
texts, embed_model=args.embedding_model, host=args.embedding_binding_host
|
|
|
|
) if args.llm_binding=="lollms" else ollama_embed(
|
|
|
|
texts, embed_model=args.embedding_model, host=args.embedding_binding_host
|
|
|
|
) if args.llm_binding=="ollama" else azure_openai_embedding(
|
|
|
|
texts, model=args.embedding_model # no host is used for openai
|
|
|
|
) if args.llm_binding=="azure_openai" else openai_embedding(
|
|
|
|
texts, model=args.embedding_model # no host is used for openai
|
|
|
|
)
|
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
),
|
|
|
|
)
|
|
|
|
|
|
|
|
@app.on_event("startup")
|
|
|
|
async def startup_event():
|
|
|
|
"""Index all files in input directory during startup"""
|
|
|
|
try:
|
|
|
|
new_files = doc_manager.scan_directory()
|
|
|
|
for file_path in new_files:
|
|
|
|
try:
|
|
|
|
# Use async file reading
|
|
|
|
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
|
|
|
|
content = await f.read()
|
|
|
|
# Use the async version of insert directly
|
|
|
|
await rag.ainsert(content)
|
|
|
|
doc_manager.mark_as_indexed(file_path)
|
|
|
|
logging.info(f"Indexed file: {file_path}")
|
|
|
|
except Exception as e:
|
|
|
|
trace_exception(e)
|
|
|
|
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
|
|
|
|
|
|
|
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
logging.error(f"Error during startup indexing: {str(e)}")
|
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
@app.post("/documents/scan", dependencies=[Depends(optional_api_key)])
|
2024-12-22 00:38:38 +01:00
|
|
|
async def scan_for_new_documents():
|
|
|
|
"""Manually trigger scanning for new documents"""
|
|
|
|
try:
|
|
|
|
new_files = doc_manager.scan_directory()
|
|
|
|
indexed_count = 0
|
|
|
|
|
|
|
|
for file_path in new_files:
|
|
|
|
try:
|
|
|
|
with open(file_path, "r", encoding="utf-8") as f:
|
|
|
|
content = f.read()
|
2024-12-26 22:48:52 +01:00
|
|
|
await rag.ainsert(content)
|
2024-12-22 00:38:38 +01:00
|
|
|
doc_manager.mark_as_indexed(file_path)
|
|
|
|
indexed_count += 1
|
|
|
|
except Exception as e:
|
|
|
|
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
|
|
|
|
|
|
|
return {
|
|
|
|
"status": "success",
|
|
|
|
"indexed_count": indexed_count,
|
|
|
|
"total_documents": len(doc_manager.indexed_files),
|
|
|
|
}
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
@app.post("/documents/upload", dependencies=[Depends(optional_api_key)])
|
2024-12-22 00:38:38 +01:00
|
|
|
async def upload_to_input_dir(file: UploadFile = File(...)):
|
|
|
|
"""Upload a file to the input directory"""
|
|
|
|
try:
|
|
|
|
if not doc_manager.is_supported_file(file.filename):
|
|
|
|
raise HTTPException(
|
|
|
|
status_code=400,
|
|
|
|
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
|
|
|
)
|
|
|
|
|
|
|
|
file_path = doc_manager.input_dir / file.filename
|
|
|
|
with open(file_path, "wb") as buffer:
|
|
|
|
shutil.copyfileobj(file.file, buffer)
|
|
|
|
|
|
|
|
# Immediately index the uploaded file
|
|
|
|
with open(file_path, "r", encoding="utf-8") as f:
|
|
|
|
content = f.read()
|
2024-12-26 22:48:52 +01:00
|
|
|
await rag.ainsert(content)
|
2024-12-22 00:38:38 +01:00
|
|
|
doc_manager.mark_as_indexed(file_path)
|
|
|
|
|
|
|
|
return {
|
|
|
|
"status": "success",
|
|
|
|
"message": f"File uploaded and indexed: {file.filename}",
|
|
|
|
"total_documents": len(doc_manager.indexed_files),
|
|
|
|
}
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
2025-01-04 02:23:39 +01:00
|
|
|
@app.post(
|
|
|
|
"/query", response_model=QueryResponse, dependencies=[Depends(optional_api_key)]
|
|
|
|
)
|
2024-12-22 00:38:38 +01:00
|
|
|
async def query_text(request: QueryRequest):
|
|
|
|
try:
|
|
|
|
response = await rag.aquery(
|
|
|
|
request.query,
|
2024-12-26 23:39:10 +01:00
|
|
|
param=QueryParam(
|
|
|
|
mode=request.mode,
|
|
|
|
stream=request.stream,
|
|
|
|
only_need_context=request.only_need_context,
|
|
|
|
),
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
if request.stream:
|
|
|
|
result = ""
|
|
|
|
async for chunk in response:
|
|
|
|
result += chunk
|
|
|
|
return QueryResponse(response=result)
|
|
|
|
else:
|
|
|
|
return QueryResponse(response=response)
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
@app.post("/query/stream", dependencies=[Depends(optional_api_key)])
|
2024-12-22 00:38:38 +01:00
|
|
|
async def query_text_stream(request: QueryRequest):
|
|
|
|
try:
|
|
|
|
response = rag.query(
|
2024-12-26 23:39:10 +01:00
|
|
|
request.query,
|
|
|
|
param=QueryParam(
|
|
|
|
mode=request.mode,
|
|
|
|
stream=True,
|
|
|
|
only_need_context=request.only_need_context,
|
|
|
|
),
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
async def stream_generator():
|
|
|
|
async for chunk in response:
|
|
|
|
yield chunk
|
|
|
|
|
|
|
|
return stream_generator()
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
2025-01-04 02:23:39 +01:00
|
|
|
@app.post(
|
|
|
|
"/documents/text",
|
|
|
|
response_model=InsertResponse,
|
|
|
|
dependencies=[Depends(optional_api_key)],
|
|
|
|
)
|
2024-12-22 00:38:38 +01:00
|
|
|
async def insert_text(request: InsertTextRequest):
|
|
|
|
try:
|
|
|
|
rag.insert(request.text)
|
|
|
|
return InsertResponse(
|
|
|
|
status="success",
|
|
|
|
message="Text successfully inserted",
|
|
|
|
document_count=len(rag),
|
|
|
|
)
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
2025-01-04 02:23:39 +01:00
|
|
|
@app.post(
|
|
|
|
"/documents/file",
|
|
|
|
response_model=InsertResponse,
|
|
|
|
dependencies=[Depends(optional_api_key)],
|
|
|
|
)
|
2024-12-22 00:38:38 +01:00
|
|
|
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
|
|
|
|
try:
|
|
|
|
content = await file.read()
|
|
|
|
|
|
|
|
if file.filename.endswith((".txt", ".md")):
|
|
|
|
text = content.decode("utf-8")
|
2024-12-26 22:48:52 +01:00
|
|
|
await rag.ainsert(text)
|
2024-12-22 00:38:38 +01:00
|
|
|
else:
|
|
|
|
raise HTTPException(
|
|
|
|
status_code=400,
|
|
|
|
detail="Unsupported file type. Only .txt and .md files are supported",
|
|
|
|
)
|
|
|
|
|
|
|
|
return InsertResponse(
|
|
|
|
status="success",
|
|
|
|
message=f"File '{file.filename}' successfully inserted",
|
2024-12-26 22:48:52 +01:00
|
|
|
document_count=1,
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
except UnicodeDecodeError:
|
|
|
|
raise HTTPException(status_code=400, detail="File encoding not supported")
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
2025-01-04 02:23:39 +01:00
|
|
|
@app.post(
|
|
|
|
"/documents/batch",
|
|
|
|
response_model=InsertResponse,
|
|
|
|
dependencies=[Depends(optional_api_key)],
|
|
|
|
)
|
2024-12-22 00:38:38 +01:00
|
|
|
async def insert_batch(files: List[UploadFile] = File(...)):
|
|
|
|
try:
|
|
|
|
inserted_count = 0
|
|
|
|
failed_files = []
|
|
|
|
|
|
|
|
for file in files:
|
|
|
|
try:
|
|
|
|
content = await file.read()
|
|
|
|
if file.filename.endswith((".txt", ".md")):
|
|
|
|
text = content.decode("utf-8")
|
2024-12-26 22:48:52 +01:00
|
|
|
await rag.ainsert(text)
|
2024-12-22 00:38:38 +01:00
|
|
|
inserted_count += 1
|
|
|
|
else:
|
|
|
|
failed_files.append(f"{file.filename} (unsupported type)")
|
|
|
|
except Exception as e:
|
|
|
|
failed_files.append(f"{file.filename} ({str(e)})")
|
|
|
|
|
|
|
|
status_message = f"Successfully inserted {inserted_count} documents"
|
|
|
|
if failed_files:
|
|
|
|
status_message += f". Failed files: {', '.join(failed_files)}"
|
|
|
|
|
|
|
|
return InsertResponse(
|
|
|
|
status="success" if inserted_count > 0 else "partial_success",
|
|
|
|
message=status_message,
|
2024-12-26 22:48:52 +01:00
|
|
|
document_count=len(files),
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
2025-01-04 02:23:39 +01:00
|
|
|
@app.delete(
|
|
|
|
"/documents",
|
|
|
|
response_model=InsertResponse,
|
|
|
|
dependencies=[Depends(optional_api_key)],
|
|
|
|
)
|
2024-12-22 00:38:38 +01:00
|
|
|
async def clear_documents():
|
|
|
|
try:
|
|
|
|
rag.text_chunks = []
|
|
|
|
rag.entities_vdb = None
|
|
|
|
rag.relationships_vdb = None
|
|
|
|
return InsertResponse(
|
|
|
|
status="success",
|
|
|
|
message="All documents cleared successfully",
|
|
|
|
document_count=0,
|
|
|
|
)
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
@app.get("/health", dependencies=[Depends(optional_api_key)])
|
2024-12-22 00:38:38 +01:00
|
|
|
async def get_status():
|
|
|
|
"""Get current system status"""
|
|
|
|
return {
|
|
|
|
"status": "healthy",
|
|
|
|
"working_directory": str(args.working_dir),
|
|
|
|
"input_directory": str(args.input_dir),
|
|
|
|
"indexed_files": len(doc_manager.indexed_files),
|
|
|
|
"configuration": {
|
2025-01-10 20:30:58 +01:00
|
|
|
# LLM configuration binding/host address (if applicable)/model (if applicable)
|
|
|
|
"llm_binding": args.llm_binding,
|
|
|
|
"llm_binding_host": args.llm_binding_host,
|
|
|
|
"llm_model": args.llm_model,
|
|
|
|
|
|
|
|
# embedding model configuration binding/host address (if applicable)/model (if applicable)
|
|
|
|
"embedding_binding": args.embedding_binding,
|
|
|
|
"embedding_binding_host": args.embedding_binding_host,
|
2024-12-22 00:38:38 +01:00
|
|
|
"embedding_model": args.embedding_model,
|
2025-01-10 20:30:58 +01:00
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
"max_tokens": args.max_tokens,
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
return app
|
|
|
|
|
|
|
|
|
2024-12-24 10:18:41 +01:00
|
|
|
def main():
|
2024-12-22 00:38:38 +01:00
|
|
|
args = parse_args()
|
|
|
|
import uvicorn
|
|
|
|
|
|
|
|
app = create_app(args)
|
|
|
|
uvicorn.run(app, host=args.host, port=args.port)
|
2024-12-24 10:18:41 +01:00
|
|
|
|
2024-12-24 10:35:00 +01:00
|
|
|
|
2024-12-24 10:18:41 +01:00
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|