LightRAG/lightrag/api/lightrag_server.py

580 lines
19 KiB
Python
Raw Normal View History

from fastapi import FastAPI, HTTPException, File, UploadFile, Form
from pydantic import BaseModel
import logging
import argparse
from lightrag import LightRAG, QueryParam
from lightrag.llm import lollms_model_complete, lollms_embed
2025-01-10 20:30:58 +01:00
from lightrag.llm import ollama_model_complete, ollama_embed
from lightrag.llm import openai_complete_if_cache, openai_embedding
from lightrag.llm import azure_openai_complete_if_cache, azure_openai_embedding
from lightrag.utils import EmbeddingFunc
from typing import Optional, List
from enum import Enum
from pathlib import Path
import shutil
import aiofiles
from ascii_colors import trace_exception
import os
2025-01-04 02:23:39 +01:00
from fastapi import Depends, Security
from fastapi.security import APIKeyHeader
from fastapi.middleware.cors import CORSMiddleware
from starlette.status import HTTP_403_FORBIDDEN
2025-01-04 02:23:39 +01:00
2025-01-10 20:30:58 +01:00
def get_default_host(binding_type: str) -> str:
default_hosts = {
"ollama": "http://localhost:11434",
"lollms": "http://localhost:9600",
"azure_openai": "https://api.openai.com/v1",
"openai": "https://api.openai.com/v1"
}
return default_hosts.get(binding_type, "http://localhost:11434") # fallback to ollama if unknown
def parse_args():
parser = argparse.ArgumentParser(
description="LightRAG FastAPI Server with separate working and input directories"
)
2025-01-10 20:30:58 +01:00
#Start by the bindings
parser.add_argument(
"--llm-binding",
default="ollama",
help="LLM binding to be used. Supported: lollms, ollama, openai (default: ollama)",
)
parser.add_argument(
"--embedding-binding",
default="ollama",
help="Embedding binding to be used. Supported: lollms, ollama, openai (default: ollama)",
)
# Parse just these arguments first
temp_args, _ = parser.parse_known_args()
# Add remaining arguments with dynamic defaults for hosts
# Server configuration
parser.add_argument(
"--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)"
)
parser.add_argument(
"--port", type=int, default=9621, help="Server port (default: 9621)"
)
# Directory configuration
parser.add_argument(
"--working-dir",
default="./rag_storage",
help="Working directory for RAG storage (default: ./rag_storage)",
)
parser.add_argument(
"--input-dir",
default="./inputs",
help="Directory containing input documents (default: ./inputs)",
)
2025-01-10 20:30:58 +01:00
# LLM Model configuration
default_llm_host = get_default_host(temp_args.llm_binding)
parser.add_argument(
2025-01-10 20:30:58 +01:00
"--llm-binding-host",
default=default_llm_host,
help=f"llm server host URL (default: {default_llm_host})",
)
parser.add_argument(
"--llm-model",
default="mistral-nemo:latest",
help="LLM model name (default: mistral-nemo:latest)",
)
2025-01-10 20:30:58 +01:00
# Embedding model configuration
default_embedding_host = get_default_host(temp_args.embedding_binding)
parser.add_argument(
"--embedding-binding-host",
default=default_embedding_host,
help=f"embedding server host URL (default: {default_embedding_host})",
)
parser.add_argument(
"--embedding-model",
default="bge-m3:latest",
help="Embedding model name (default: bge-m3:latest)",
)
2025-01-10 21:39:25 +01:00
parser.add_argument(
"--timeout",
default=300,
help="Timeout is seconds (useful when using slow AI)",
)
# RAG configuration
parser.add_argument(
"--max-async", type=int, default=4, help="Maximum async operations (default: 4)"
)
parser.add_argument(
"--max-tokens",
type=int,
default=32768,
help="Maximum token size (default: 32768)",
)
parser.add_argument(
"--embedding-dim",
type=int,
default=1024,
help="Embedding dimensions (default: 1024)",
)
parser.add_argument(
"--max-embed-tokens",
type=int,
default=8192,
help="Maximum embedding token size (default: 8192)",
)
# Logging configuration
parser.add_argument(
"--log-level",
default="INFO",
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Logging level (default: INFO)",
)
2025-01-04 02:23:39 +01:00
parser.add_argument(
"--key",
type=str,
help="API key for authentication. This protects lightrag server against unauthorized access",
default=None,
)
2025-01-10 21:39:25 +01:00
# Optional https parameters
parser.add_argument(
"--ssl",
action="store_true",
help="Enable HTTPS (default: False)"
)
parser.add_argument(
"--ssl-certfile",
default=None,
help="Path to SSL certificate file (required if --ssl is enabled)"
)
parser.add_argument(
"--ssl-keyfile",
default=None,
help="Path to SSL private key file (required if --ssl is enabled)"
)
return parser.parse_args()
class DocumentManager:
"""Handles document operations and tracking"""
def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")):
self.input_dir = Path(input_dir)
self.supported_extensions = supported_extensions
self.indexed_files = set()
# Create input directory if it doesn't exist
self.input_dir.mkdir(parents=True, exist_ok=True)
def scan_directory(self) -> List[Path]:
"""Scan input directory for new files"""
new_files = []
for ext in self.supported_extensions:
for file_path in self.input_dir.rglob(f"*{ext}"):
if file_path not in self.indexed_files:
new_files.append(file_path)
return new_files
def mark_as_indexed(self, file_path: Path):
"""Mark a file as indexed"""
self.indexed_files.add(file_path)
def is_supported_file(self, filename: str) -> bool:
"""Check if file type is supported"""
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
# Pydantic models
class SearchMode(str, Enum):
naive = "naive"
local = "local"
global_ = "global"
hybrid = "hybrid"
class QueryRequest(BaseModel):
query: str
mode: SearchMode = SearchMode.hybrid
stream: bool = False
only_need_context: bool = False
class QueryResponse(BaseModel):
response: str
class InsertTextRequest(BaseModel):
text: str
description: Optional[str] = None
class InsertResponse(BaseModel):
status: str
message: str
document_count: int
2025-01-04 02:23:39 +01:00
def get_api_key_dependency(api_key: Optional[str]):
if not api_key:
# If no API key is configured, return a dummy dependency that always succeeds
async def no_auth():
return None
2025-01-04 02:23:39 +01:00
return no_auth
2025-01-04 02:23:39 +01:00
# If API key is configured, use proper authentication
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
2025-01-04 02:23:39 +01:00
async def api_key_auth(api_key_header_value: str | None = Security(api_key_header)):
if not api_key_header_value:
raise HTTPException(
2025-01-04 02:23:39 +01:00
status_code=HTTP_403_FORBIDDEN, detail="API Key required"
)
if api_key_header_value != api_key:
raise HTTPException(
2025-01-04 02:23:39 +01:00
status_code=HTTP_403_FORBIDDEN, detail="Invalid API Key"
)
return api_key_header_value
2025-01-04 02:23:39 +01:00
return api_key_auth
def create_app(args):
2025-01-10 20:30:58 +01:00
# Verify that bindings arer correctly setup
if args.llm_binding not in ["lollms", "ollama", "openai"]:
raise Exception("llm binding not supported")
if args.embedding_binding not in ["lollms", "ollama", "openai"]:
raise Exception("embedding binding not supported")
# Setup logging
logging.basicConfig(
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
)
# Check if API key is provided either through env var or args
api_key = os.getenv("LIGHTRAG_API_KEY") or args.key
2025-01-04 02:23:39 +01:00
# Initialize FastAPI
app = FastAPI(
title="LightRAG API",
2025-01-04 02:23:39 +01:00
description="API for querying text using LightRAG with separate storage and input directories"
+ "(With authentication)"
if api_key
else "",
2025-01-10 20:30:58 +01:00
version="1.0.1",
2025-01-04 02:23:39 +01:00
openapi_tags=[{"name": "api"}],
)
2025-01-04 02:23:39 +01:00
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Create the optional API key dependency
optional_api_key = get_api_key_dependency(api_key)
# Create working directory if it doesn't exist
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
# Initialize document manager
doc_manager = DocumentManager(args.input_dir)
2025-01-10 20:30:58 +01:00
# Initialize RAG
rag = LightRAG(
working_dir=args.working_dir,
2025-01-10 20:30:58 +01:00
llm_model_func=lollms_model_complete if args.llm_binding=="lollms" else ollama_model_complete if args.llm_binding=="ollama" else azure_openai_complete_if_cache if args.llm_binding=="azure_openai" else openai_complete_if_cache,
llm_model_name=args.llm_model,
llm_model_max_async=args.max_async,
llm_model_max_token_size=args.max_tokens,
llm_model_kwargs={
2025-01-10 20:30:58 +01:00
"host": args.llm_binding_host,
2025-01-10 21:39:25 +01:00
"timeout":args.timeout
"options": {"num_ctx": args.max_tokens},
},
embedding_func=EmbeddingFunc(
embedding_dim=args.embedding_dim,
max_token_size=args.max_embed_tokens,
func=lambda texts: lollms_embed(
2025-01-10 20:30:58 +01:00
texts, embed_model=args.embedding_model, host=args.embedding_binding_host
) if args.llm_binding=="lollms" else ollama_embed(
texts, embed_model=args.embedding_model, host=args.embedding_binding_host
) if args.llm_binding=="ollama" else azure_openai_embedding(
texts, model=args.embedding_model # no host is used for openai
) if args.llm_binding=="azure_openai" else openai_embedding(
texts, model=args.embedding_model # no host is used for openai
)
),
)
@app.on_event("startup")
async def startup_event():
"""Index all files in input directory during startup"""
try:
new_files = doc_manager.scan_directory()
for file_path in new_files:
try:
# Use async file reading
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
content = await f.read()
# Use the async version of insert directly
await rag.ainsert(content)
doc_manager.mark_as_indexed(file_path)
logging.info(f"Indexed file: {file_path}")
except Exception as e:
trace_exception(e)
logging.error(f"Error indexing file {file_path}: {str(e)}")
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
except Exception as e:
logging.error(f"Error during startup indexing: {str(e)}")
@app.post("/documents/scan", dependencies=[Depends(optional_api_key)])
async def scan_for_new_documents():
"""Manually trigger scanning for new documents"""
try:
new_files = doc_manager.scan_directory()
indexed_count = 0
for file_path in new_files:
try:
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
2024-12-26 22:48:52 +01:00
await rag.ainsert(content)
doc_manager.mark_as_indexed(file_path)
indexed_count += 1
except Exception as e:
logging.error(f"Error indexing file {file_path}: {str(e)}")
return {
"status": "success",
"indexed_count": indexed_count,
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/documents/upload", dependencies=[Depends(optional_api_key)])
async def upload_to_input_dir(file: UploadFile = File(...)):
"""Upload a file to the input directory"""
try:
if not doc_manager.is_supported_file(file.filename):
raise HTTPException(
status_code=400,
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
)
file_path = doc_manager.input_dir / file.filename
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Immediately index the uploaded file
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
2024-12-26 22:48:52 +01:00
await rag.ainsert(content)
doc_manager.mark_as_indexed(file_path)
return {
"status": "success",
"message": f"File uploaded and indexed: {file.filename}",
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
2025-01-04 02:23:39 +01:00
@app.post(
"/query", response_model=QueryResponse, dependencies=[Depends(optional_api_key)]
)
async def query_text(request: QueryRequest):
try:
response = await rag.aquery(
request.query,
2024-12-26 23:39:10 +01:00
param=QueryParam(
mode=request.mode,
stream=request.stream,
only_need_context=request.only_need_context,
),
)
if request.stream:
result = ""
async for chunk in response:
result += chunk
return QueryResponse(response=result)
else:
return QueryResponse(response=response)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/query/stream", dependencies=[Depends(optional_api_key)])
async def query_text_stream(request: QueryRequest):
try:
response = rag.query(
2024-12-26 23:39:10 +01:00
request.query,
param=QueryParam(
mode=request.mode,
stream=True,
only_need_context=request.only_need_context,
),
)
async def stream_generator():
async for chunk in response:
yield chunk
return stream_generator()
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
2025-01-04 02:23:39 +01:00
@app.post(
"/documents/text",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_text(request: InsertTextRequest):
try:
rag.insert(request.text)
return InsertResponse(
status="success",
message="Text successfully inserted",
document_count=len(rag),
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
2025-01-04 02:23:39 +01:00
@app.post(
"/documents/file",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
try:
content = await file.read()
if file.filename.endswith((".txt", ".md")):
text = content.decode("utf-8")
2024-12-26 22:48:52 +01:00
await rag.ainsert(text)
else:
raise HTTPException(
status_code=400,
detail="Unsupported file type. Only .txt and .md files are supported",
)
return InsertResponse(
status="success",
message=f"File '{file.filename}' successfully inserted",
2024-12-26 22:48:52 +01:00
document_count=1,
)
except UnicodeDecodeError:
raise HTTPException(status_code=400, detail="File encoding not supported")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
2025-01-04 02:23:39 +01:00
@app.post(
"/documents/batch",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_batch(files: List[UploadFile] = File(...)):
try:
inserted_count = 0
failed_files = []
for file in files:
try:
content = await file.read()
if file.filename.endswith((".txt", ".md")):
text = content.decode("utf-8")
2024-12-26 22:48:52 +01:00
await rag.ainsert(text)
inserted_count += 1
else:
failed_files.append(f"{file.filename} (unsupported type)")
except Exception as e:
failed_files.append(f"{file.filename} ({str(e)})")
status_message = f"Successfully inserted {inserted_count} documents"
if failed_files:
status_message += f". Failed files: {', '.join(failed_files)}"
return InsertResponse(
status="success" if inserted_count > 0 else "partial_success",
message=status_message,
2024-12-26 22:48:52 +01:00
document_count=len(files),
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
2025-01-04 02:23:39 +01:00
@app.delete(
"/documents",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def clear_documents():
try:
rag.text_chunks = []
rag.entities_vdb = None
rag.relationships_vdb = None
return InsertResponse(
status="success",
message="All documents cleared successfully",
document_count=0,
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health", dependencies=[Depends(optional_api_key)])
async def get_status():
"""Get current system status"""
return {
"status": "healthy",
"working_directory": str(args.working_dir),
"input_directory": str(args.input_dir),
"indexed_files": len(doc_manager.indexed_files),
"configuration": {
2025-01-10 20:30:58 +01:00
# LLM configuration binding/host address (if applicable)/model (if applicable)
"llm_binding": args.llm_binding,
"llm_binding_host": args.llm_binding_host,
"llm_model": args.llm_model,
# embedding model configuration binding/host address (if applicable)/model (if applicable)
"embedding_binding": args.embedding_binding,
"embedding_binding_host": args.embedding_binding_host,
"embedding_model": args.embedding_model,
2025-01-10 20:30:58 +01:00
"max_tokens": args.max_tokens,
},
}
return app
def main():
args = parse_args()
import uvicorn
app = create_app(args)
uvicorn.run(app, host=args.host, port=args.port)
2024-12-24 10:35:00 +01:00
if __name__ == "__main__":
main()