mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-03 23:19:22 +00:00
134 lines
4.1 KiB
Python
134 lines
4.1 KiB
Python
![]() |
import asyncio
|
||
|
import inspect
|
||
|
import logging
|
||
|
import os
|
||
|
import time
|
||
|
from dotenv import load_dotenv
|
||
|
|
||
|
from lightrag import LightRAG, QueryParam
|
||
|
from lightrag.kg.postgres_impl import PostgreSQLDB, PGGraphStorage
|
||
|
from lightrag.llm import ollama_embedding, zhipu_complete
|
||
|
from lightrag.utils import EmbeddingFunc
|
||
|
|
||
|
load_dotenv()
|
||
|
ROOT_DIR = os.environ.get("ROOT_DIR")
|
||
|
WORKING_DIR = f"{ROOT_DIR}/dickens-pg"
|
||
|
|
||
|
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
||
|
|
||
|
if not os.path.exists(WORKING_DIR):
|
||
|
os.mkdir(WORKING_DIR)
|
||
|
|
||
|
# AGE
|
||
|
os.environ["AGE_GRAPH_NAME"] = "dickens"
|
||
|
|
||
|
postgres_db = PostgreSQLDB(
|
||
|
config={
|
||
|
"host": "localhost",
|
||
|
"port": 15432,
|
||
|
"user": "rag",
|
||
|
"password": "rag",
|
||
|
"database": "rag",
|
||
|
}
|
||
|
)
|
||
|
|
||
|
|
||
|
async def main():
|
||
|
await postgres_db.initdb()
|
||
|
# Check if PostgreSQL DB tables exist, if not, tables will be created
|
||
|
await postgres_db.check_tables()
|
||
|
|
||
|
rag = LightRAG(
|
||
|
working_dir=WORKING_DIR,
|
||
|
llm_model_func=zhipu_complete,
|
||
|
llm_model_name="glm-4-flashx",
|
||
|
llm_model_max_async=4,
|
||
|
llm_model_max_token_size=32768,
|
||
|
embedding_func=EmbeddingFunc(
|
||
|
embedding_dim=768,
|
||
|
max_token_size=8192,
|
||
|
func=lambda texts: ollama_embedding(
|
||
|
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||
|
),
|
||
|
),
|
||
|
kv_storage="PGKVStorage",
|
||
|
doc_status_storage="PGDocStatusStorage",
|
||
|
graph_storage="PGGraphStorage",
|
||
|
vector_storage="PGVectorStorage"
|
||
|
)
|
||
|
# Set the KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
||
|
rag.doc_status.db = postgres_db
|
||
|
rag.full_docs.db = postgres_db
|
||
|
rag.text_chunks.db = postgres_db
|
||
|
rag.llm_response_cache.db = postgres_db
|
||
|
rag.key_string_value_json_storage_cls.db = postgres_db
|
||
|
rag.chunks_vdb.db = postgres_db
|
||
|
rag.relationships_vdb.db = postgres_db
|
||
|
rag.entities_vdb.db = postgres_db
|
||
|
rag.graph_storage_cls.db = postgres_db
|
||
|
rag.chunk_entity_relation_graph.db = postgres_db
|
||
|
await rag.chunk_entity_relation_graph.check_graph_exists()
|
||
|
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
|
||
|
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
|
||
|
|
||
|
with open(f"{ROOT_DIR}/book.txt", "r", encoding="utf-8") as f:
|
||
|
await rag.ainsert(f.read())
|
||
|
|
||
|
print("==== Trying to test the rag queries ====")
|
||
|
print("**** Start Naive Query ****")
|
||
|
start_time = time.time()
|
||
|
# Perform naive search
|
||
|
print(
|
||
|
await rag.aquery("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||
|
)
|
||
|
print(f"Naive Query Time: {time.time() - start_time} seconds")
|
||
|
# Perform local search
|
||
|
print("**** Start Local Query ****")
|
||
|
start_time = time.time()
|
||
|
print(
|
||
|
await rag.aquery("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||
|
)
|
||
|
print(f"Local Query Time: {time.time() - start_time} seconds")
|
||
|
# Perform global search
|
||
|
print("**** Start Global Query ****")
|
||
|
start_time = time.time()
|
||
|
print(
|
||
|
await rag.aquery("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||
|
)
|
||
|
print(f"Global Query Time: {time.time() - start_time}")
|
||
|
# Perform hybrid search
|
||
|
print("**** Start Hybrid Query ****")
|
||
|
print(
|
||
|
await rag.aquery("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||
|
)
|
||
|
print(f"Hybrid Query Time: {time.time() - start_time} seconds")
|
||
|
|
||
|
print("**** Start Stream Query ****")
|
||
|
start_time = time.time()
|
||
|
# stream response
|
||
|
resp = await rag.aquery(
|
||
|
"What are the top themes in this story?",
|
||
|
param=QueryParam(mode="hybrid", stream=True),
|
||
|
)
|
||
|
print(f"Stream Query Time: {time.time() - start_time} seconds")
|
||
|
print("**** Done Stream Query ****")
|
||
|
|
||
|
if inspect.isasyncgen(resp):
|
||
|
asyncio.run(print_stream(resp))
|
||
|
else:
|
||
|
print(resp)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
asyncio.run(main())
|
||
|
|
||
|
|
||
|
async def print_stream(stream):
|
||
|
async for chunk in stream:
|
||
|
print(chunk, end="", flush=True)
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|