LightRAG/lightrag/api/lightrag_server.py

1923 lines
72 KiB
Python
Raw Normal View History

2025-01-31 23:35:42 +08:00
from fastapi import (
FastAPI,
HTTPException,
File,
UploadFile,
Form,
Request,
BackgroundTasks,
)
# Backend (Python)
# Add this to store progress globally
from typing import Dict
import threading
import json
import os
2025-01-24 13:55:50 +01:00
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
import logging
import argparse
import time
import re
2025-02-01 15:22:40 +08:00
from typing import List, Any, Optional, Union
from lightrag import LightRAG, QueryParam
from lightrag.api import __api_version__
2025-01-10 20:30:58 +01:00
from lightrag.utils import EmbeddingFunc
from enum import Enum
from pathlib import Path
import shutil
import aiofiles
from ascii_colors import trace_exception, ASCIIColors
import sys
import configparser
2025-01-04 02:23:39 +01:00
from fastapi import Depends, Security
from fastapi.security import APIKeyHeader
from fastapi.middleware.cors import CORSMiddleware
from contextlib import asynccontextmanager
from starlette.status import HTTP_403_FORBIDDEN
2025-01-14 23:08:39 +01:00
import pipmaster as pm
2025-01-04 02:23:39 +01:00
2025-01-17 02:34:29 +01:00
from dotenv import load_dotenv
2025-02-01 15:22:40 +08:00
# Load environment variables
load_dotenv()
2025-02-01 15:22:40 +08:00
# Global progress tracker
scan_progress: Dict = {
"is_scanning": False,
"current_file": "",
"indexed_count": 0,
"total_files": 0,
"progress": 0,
}
# Lock for thread-safe operations
progress_lock = threading.Lock()
2025-01-19 08:07:26 +08:00
def estimate_tokens(text: str) -> int:
"""Estimate the number of tokens in text
Chinese characters: approximately 1.5 tokens per character
English characters: approximately 0.25 tokens per character
"""
# Use regex to match Chinese and non-Chinese characters separately
chinese_chars = len(re.findall(r"[\u4e00-\u9fff]", text))
non_chinese_chars = len(re.findall(r"[^\u4e00-\u9fff]", text))
# Calculate estimated token count
tokens = chinese_chars * 1.5 + non_chinese_chars * 0.25
return int(tokens)
2025-01-28 15:30:36 +01:00
class OllamaServerInfos:
# Constants for emulated Ollama model information
LIGHTRAG_NAME = "lightrag"
LIGHTRAG_TAG = os.getenv("OLLAMA_EMULATING_MODEL_TAG", "latest")
LIGHTRAG_MODEL = f"{LIGHTRAG_NAME}:{LIGHTRAG_TAG}"
LIGHTRAG_SIZE = 7365960935 # it's a dummy value
LIGHTRAG_CREATED_AT = "2024-01-15T00:00:00Z"
LIGHTRAG_DIGEST = "sha256:lightrag"
2025-01-28 18:20:45 +01:00
2025-01-28 15:30:36 +01:00
KV_STORAGE = "JsonKVStorage"
DOC_STATUS_STORAGE = "JsonDocStatusStorage"
GRAPH_STORAGE = "NetworkXStorage"
VECTOR_STORAGE = "NanoVectorDBStorage"
2025-01-28 18:20:45 +01:00
2025-01-28 15:30:36 +01:00
# Add infos
ollama_server_infos = OllamaServerInfos()
# read config.ini
config = configparser.ConfigParser()
2025-01-26 09:13:11 +08:00
config.read("config.ini", "utf-8")
# Redis config
redis_uri = config.get("redis", "uri", fallback=None)
if redis_uri:
os.environ["REDIS_URI"] = redis_uri
2025-01-28 15:30:36 +01:00
ollama_server_infos.KV_STORAGE = "RedisKVStorage"
ollama_server_infos.DOC_STATUS_STORAGE = "RedisKVStorage"
# Neo4j config
neo4j_uri = config.get("neo4j", "uri", fallback=None)
neo4j_username = config.get("neo4j", "username", fallback=None)
neo4j_password = config.get("neo4j", "password", fallback=None)
if neo4j_uri:
os.environ["NEO4J_URI"] = neo4j_uri
os.environ["NEO4J_USERNAME"] = neo4j_username
os.environ["NEO4J_PASSWORD"] = neo4j_password
2025-01-28 15:30:36 +01:00
ollama_server_infos.GRAPH_STORAGE = "Neo4JStorage"
# Milvus config
milvus_uri = config.get("milvus", "uri", fallback=None)
milvus_user = config.get("milvus", "user", fallback=None)
milvus_password = config.get("milvus", "password", fallback=None)
milvus_db_name = config.get("milvus", "db_name", fallback=None)
if milvus_uri:
os.environ["MILVUS_URI"] = milvus_uri
os.environ["MILVUS_USER"] = milvus_user
os.environ["MILVUS_PASSWORD"] = milvus_password
os.environ["MILVUS_DB_NAME"] = milvus_db_name
2025-01-28 15:30:36 +01:00
ollama_server_infos.VECTOR_STORAGE = "MilvusVectorDBStorge"
# MongoDB config
mongo_uri = config.get("mongodb", "uri", fallback=None)
mongo_database = config.get("mongodb", "LightRAG", fallback=None)
if mongo_uri:
os.environ["MONGO_URI"] = mongo_uri
os.environ["MONGO_DATABASE"] = mongo_database
2025-01-28 15:30:36 +01:00
ollama_server_infos.KV_STORAGE = "MongoKVStorage"
ollama_server_infos.DOC_STATUS_STORAGE = "MongoKVStorage"
2025-01-11 01:37:07 +01:00
2025-01-10 20:30:58 +01:00
def get_default_host(binding_type: str) -> str:
default_hosts = {
"ollama": os.getenv("LLM_BINDING_HOST", "http://localhost:11434"),
"lollms": os.getenv("LLM_BINDING_HOST", "http://localhost:9600"),
"azure_openai": os.getenv("AZURE_OPENAI_ENDPOINT", "https://api.openai.com/v1"),
"openai": os.getenv("LLM_BINDING_HOST", "https://api.openai.com/v1"),
2025-01-10 20:30:58 +01:00
}
2025-01-11 01:37:07 +01:00
return default_hosts.get(
binding_type, os.getenv("LLM_BINDING_HOST", "http://localhost:11434")
2025-01-11 01:37:07 +01:00
) # fallback to ollama if unknown
2025-01-17 01:36:16 +01:00
def get_env_value(env_key: str, default: Any, value_type: type = str) -> Any:
"""
Get value from environment variable with type conversion
2025-01-17 01:36:16 +01:00
Args:
env_key (str): Environment variable key
default (Any): Default value if env variable is not set
value_type (type): Type to convert the value to
2025-01-17 01:36:16 +01:00
Returns:
Any: Converted value from environment or default
"""
value = os.getenv(env_key)
if value is None:
return default
2025-01-17 01:36:16 +01:00
2025-01-17 02:34:29 +01:00
if isinstance(value_type, bool):
2025-01-17 01:36:16 +01:00
return value.lower() in ("true", "1", "yes")
try:
return value_type(value)
except ValueError:
return default
2025-01-17 01:36:16 +01:00
def display_splash_screen(args: argparse.Namespace) -> None:
"""
Display a colorful splash screen showing LightRAG server configuration
2025-01-17 01:36:16 +01:00
Args:
args: Parsed command line arguments
"""
# Banner
ASCIIColors.cyan(f"""
🚀 LightRAG Server v{__api_version__}
Fast, Lightweight RAG Server Implementation
""")
# Server Configuration
ASCIIColors.magenta("\n📡 Server Configuration:")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Host: ", end="")
ASCIIColors.yellow(f"{args.host}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Port: ", end="")
ASCIIColors.yellow(f"{args.port}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ SSL Enabled: ", end="")
ASCIIColors.yellow(f"{args.ssl}")
if args.ssl:
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ SSL Cert: ", end="")
ASCIIColors.yellow(f"{args.ssl_certfile}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" └─ SSL Key: ", end="")
ASCIIColors.yellow(f"{args.ssl_keyfile}")
# Directory Configuration
ASCIIColors.magenta("\n📂 Directory Configuration:")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Working Directory: ", end="")
ASCIIColors.yellow(f"{args.working_dir}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" └─ Input Directory: ", end="")
ASCIIColors.yellow(f"{args.input_dir}")
# LLM Configuration
ASCIIColors.magenta("\n🤖 LLM Configuration:")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Binding: ", end="")
ASCIIColors.yellow(f"{args.llm_binding}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Host: ", end="")
ASCIIColors.yellow(f"{args.llm_binding_host}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" └─ Model: ", end="")
ASCIIColors.yellow(f"{args.llm_model}")
# Embedding Configuration
ASCIIColors.magenta("\n📊 Embedding Configuration:")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Binding: ", end="")
ASCIIColors.yellow(f"{args.embedding_binding}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Host: ", end="")
ASCIIColors.yellow(f"{args.embedding_binding_host}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Model: ", end="")
ASCIIColors.yellow(f"{args.embedding_model}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" └─ Dimensions: ", end="")
ASCIIColors.yellow(f"{args.embedding_dim}")
# RAG Configuration
ASCIIColors.magenta("\n⚙️ RAG Configuration:")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Max Async Operations: ", end="")
ASCIIColors.yellow(f"{args.max_async}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Max Tokens: ", end="")
ASCIIColors.yellow(f"{args.max_tokens}")
ASCIIColors.white(" ├─ Max Embed Tokens: ", end="")
ASCIIColors.yellow(f"{args.max_embed_tokens}")
ASCIIColors.white(" ├─ Chunk Size: ", end="")
ASCIIColors.yellow(f"{args.chunk_size}")
ASCIIColors.white(" ├─ Chunk Overlap Size: ", end="")
ASCIIColors.yellow(f"{args.chunk_overlap_size}")
ASCIIColors.white(" ├─ History Turns: ", end="")
ASCIIColors.yellow(f"{args.history_turns}")
ASCIIColors.white(" ├─ Cosine Threshold: ", end="")
ASCIIColors.yellow(f"{args.cosine_threshold}")
ASCIIColors.white(" └─ Top-K: ", end="")
ASCIIColors.yellow(f"{args.top_k}")
# System Configuration
ASCIIColors.magenta("\n🛠️ System Configuration:")
ASCIIColors.white(" ├─ Ollama Emulating Model: ", end="")
2025-01-28 15:30:36 +01:00
ASCIIColors.yellow(f"{ollama_server_infos.LIGHTRAG_MODEL}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Log Level: ", end="")
ASCIIColors.yellow(f"{args.log_level}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Timeout: ", end="")
ASCIIColors.yellow(f"{args.timeout if args.timeout else 'None (infinite)'}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" └─ API Key: ", end="")
ASCIIColors.yellow("Set" if args.key else "Not Set")
# Server Status
ASCIIColors.green("\n✨ Server starting up...\n")
2025-01-17 00:54:24 +01:00
# Server Access Information
protocol = "https" if args.ssl else "http"
if args.host == "0.0.0.0":
ASCIIColors.magenta("\n🌐 Server Access Information:")
ASCIIColors.white(" ├─ Local Access: ", end="")
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}")
ASCIIColors.white(" ├─ Remote Access: ", end="")
ASCIIColors.yellow(f"{protocol}://<your-ip-address>:{args.port}")
ASCIIColors.white(" ├─ API Documentation (local): ", end="")
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/docs")
ASCIIColors.white(" └─ Alternative Documentation (local): ", end="")
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/redoc")
2025-01-17 01:36:16 +01:00
2025-01-17 00:54:24 +01:00
ASCIIColors.yellow("\n📝 Note:")
ASCIIColors.white(""" Since the server is running on 0.0.0.0:
- Use 'localhost' or '127.0.0.1' for local access
- Use your machine's IP address for remote access
- To find your IP address:
Windows: Run 'ipconfig' in terminal
Linux/Mac: Run 'ifconfig' or 'ip addr' in terminal
""")
else:
base_url = f"{protocol}://{args.host}:{args.port}"
ASCIIColors.magenta("\n🌐 Server Access Information:")
ASCIIColors.white(" ├─ Base URL: ", end="")
ASCIIColors.yellow(f"{base_url}")
ASCIIColors.white(" ├─ API Documentation: ", end="")
ASCIIColors.yellow(f"{base_url}/docs")
ASCIIColors.white(" └─ Alternative Documentation: ", end="")
ASCIIColors.yellow(f"{base_url}/redoc")
# Usage Examples
ASCIIColors.magenta("\n📚 Quick Start Guide:")
2025-01-17 01:36:16 +01:00
ASCIIColors.cyan("""
2025-01-17 00:54:24 +01:00
1. Access the Swagger UI:
Open your browser and navigate to the API documentation URL above
2025-01-17 01:36:16 +01:00
2025-01-17 00:54:24 +01:00
2. API Authentication:""")
if args.key:
ASCIIColors.cyan(""" Add the following header to your requests:
X-API-Key: <your-api-key>
""")
else:
ASCIIColors.cyan(" No authentication required\n")
2025-01-17 01:36:16 +01:00
2025-01-17 00:54:24 +01:00
ASCIIColors.cyan(""" 3. Basic Operations:
- POST /upload_document: Upload new documents to RAG
- POST /query: Query your document collection
- GET /collections: List available collections
2025-01-17 01:36:16 +01:00
2025-01-17 00:54:24 +01:00
4. Monitor the server:
- Check server logs for detailed operation information
- Use healthcheck endpoint: GET /health
""")
# Security Notice
if args.key:
ASCIIColors.yellow("\n⚠️ Security Notice:")
ASCIIColors.white(""" API Key authentication is enabled.
Make sure to include the X-API-Key header in all your requests.
""")
2025-01-17 01:36:16 +01:00
ASCIIColors.green("Server is ready to accept connections! 🚀\n")
# Ensure splash output flush to system log
sys.stdout.flush()
def parse_args() -> argparse.Namespace:
"""
Parse command line arguments with environment variable fallback
2025-01-17 01:36:16 +01:00
Returns:
argparse.Namespace: Parsed arguments
"""
2025-01-17 01:36:16 +01:00
parser = argparse.ArgumentParser(
description="LightRAG FastAPI Server with separate working and input directories"
)
# Bindings configuration
2025-01-10 20:30:58 +01:00
parser.add_argument(
"--llm-binding",
default=get_env_value("LLM_BINDING", "ollama"),
help="LLM binding to be used. Supported: lollms, ollama, openai (default: from env or ollama)",
2025-01-10 20:30:58 +01:00
)
parser.add_argument(
"--embedding-binding",
default=get_env_value("EMBEDDING_BINDING", "ollama"),
help="Embedding binding to be used. Supported: lollms, ollama, openai (default: from env or ollama)",
2025-01-10 20:30:58 +01:00
)
2025-01-11 01:37:07 +01:00
# Server configuration
parser.add_argument(
"--host",
default=get_env_value("HOST", "0.0.0.0"),
2025-01-17 01:36:16 +01:00
help="Server host (default: from env or 0.0.0.0)",
)
parser.add_argument(
"--port",
type=int,
default=get_env_value("PORT", 9621, int),
2025-01-17 01:36:16 +01:00
help="Server port (default: from env or 9621)",
)
# Directory configuration
parser.add_argument(
"--working-dir",
default=get_env_value("WORKING_DIR", "./rag_storage"),
help="Working directory for RAG storage (default: from env or ./rag_storage)",
)
parser.add_argument(
"--input-dir",
default=get_env_value("INPUT_DIR", "./inputs"),
help="Directory containing input documents (default: from env or ./inputs)",
)
2025-01-10 20:30:58 +01:00
# LLM Model configuration
parser.add_argument(
2025-01-10 20:30:58 +01:00
"--llm-binding-host",
default=get_env_value("LLM_BINDING_HOST", None),
2025-01-26 05:10:57 +08:00
help="LLM server host URL. If not provided, defaults based on llm-binding:\n"
+ "- ollama: http://localhost:11434\n"
+ "- lollms: http://localhost:9600\n"
+ "- openai: https://api.openai.com/v1",
2025-01-10 20:30:58 +01:00
)
2025-01-20 00:26:28 +01:00
default_llm_api_key = get_env_value("LLM_BINDING_API_KEY", None)
2025-01-17 11:18:45 +01:00
parser.add_argument(
"--llm-binding-api-key",
default=default_llm_api_key,
2025-01-20 00:26:28 +01:00
help="llm server API key (default: from env or empty string)",
2025-01-17 11:18:45 +01:00
)
2025-01-10 20:30:58 +01:00
parser.add_argument(
"--llm-model",
default=get_env_value("LLM_MODEL", "mistral-nemo:latest"),
help="LLM model name (default: from env or mistral-nemo:latest)",
)
2025-01-10 20:30:58 +01:00
# Embedding model configuration
parser.add_argument(
"--embedding-binding-host",
default=get_env_value("EMBEDDING_BINDING_HOST", None),
2025-01-26 05:10:57 +08:00
help="Embedding server host URL. If not provided, defaults based on embedding-binding:\n"
+ "- ollama: http://localhost:11434\n"
+ "- lollms: http://localhost:9600\n"
+ "- openai: https://api.openai.com/v1",
2025-01-10 20:30:58 +01:00
)
2025-01-20 00:26:28 +01:00
default_embedding_api_key = get_env_value("EMBEDDING_BINDING_API_KEY", "")
2025-01-17 11:18:45 +01:00
parser.add_argument(
"--embedding-binding-api-key",
default=default_embedding_api_key,
2025-01-20 00:26:28 +01:00
help="embedding server API key (default: from env or empty string)",
2025-01-17 11:18:45 +01:00
)
2025-01-10 20:30:58 +01:00
parser.add_argument(
"--embedding-model",
default=get_env_value("EMBEDDING_MODEL", "bge-m3:latest"),
help="Embedding model name (default: from env or bge-m3:latest)",
)
parser.add_argument(
"--chunk_size",
default=get_env_value("CHUNK_SIZE", 1200),
help="chunk chunk size default 1200",
)
parser.add_argument(
"--chunk_overlap_size",
default=get_env_value("CHUNK_OVERLAP_SIZE", 100),
help="chunk overlap size default 100",
)
2025-01-10 22:17:13 +01:00
def timeout_type(value):
if value is None or value == "None":
return None
return int(value)
2025-01-10 21:39:25 +01:00
parser.add_argument(
"--timeout",
default=get_env_value("TIMEOUT", None, timeout_type),
2025-01-10 22:17:13 +01:00
type=timeout_type,
help="Timeout in seconds (useful when using slow AI). Use None for infinite timeout",
2025-01-10 21:39:25 +01:00
)
# RAG configuration
parser.add_argument(
"--max-async",
type=int,
default=get_env_value("MAX_ASYNC", 4, int),
2025-01-17 01:36:16 +01:00
help="Maximum async operations (default: from env or 4)",
)
parser.add_argument(
"--max-tokens",
type=int,
default=get_env_value("MAX_TOKENS", 32768, int),
help="Maximum token size (default: from env or 32768)",
)
parser.add_argument(
"--embedding-dim",
type=int,
default=get_env_value("EMBEDDING_DIM", 1024, int),
help="Embedding dimensions (default: from env or 1024)",
)
parser.add_argument(
"--max-embed-tokens",
type=int,
default=get_env_value("MAX_EMBED_TOKENS", 8192, int),
help="Maximum embedding token size (default: from env or 8192)",
)
# Logging configuration
parser.add_argument(
"--log-level",
default=get_env_value("LOG_LEVEL", "INFO"),
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Logging level (default: from env or INFO)",
)
2025-01-04 02:23:39 +01:00
parser.add_argument(
"--key",
type=str,
default=get_env_value("LIGHTRAG_API_KEY", None),
2025-01-04 02:23:39 +01:00
help="API key for authentication. This protects lightrag server against unauthorized access",
)
2025-01-10 21:39:25 +01:00
# Optional https parameters
parser.add_argument(
"--ssl",
action="store_true",
default=get_env_value("SSL", False, bool),
2025-01-17 01:36:16 +01:00
help="Enable HTTPS (default: from env or False)",
2025-01-10 21:39:25 +01:00
)
parser.add_argument(
"--ssl-certfile",
default=get_env_value("SSL_CERTFILE", None),
2025-01-11 01:37:07 +01:00
help="Path to SSL certificate file (required if --ssl is enabled)",
2025-01-10 21:39:25 +01:00
)
parser.add_argument(
"--ssl-keyfile",
default=get_env_value("SSL_KEYFILE", None),
2025-01-11 01:37:07 +01:00
help="Path to SSL private key file (required if --ssl is enabled)",
2025-01-10 21:39:25 +01:00
)
2025-01-24 17:04:02 +01:00
parser.add_argument(
2025-01-24 21:01:34 +01:00
"--auto-scan-at-startup",
action="store_true",
2025-01-24 17:04:02 +01:00
default=False,
2025-01-24 21:01:34 +01:00
help="Enable automatic scanning when the program starts",
2025-01-24 17:04:02 +01:00
)
parser.add_argument(
"--history-turns",
type=int,
2025-01-26 05:19:51 +08:00
default=get_env_value("HISTORY_TURNS", 3, int),
help="Number of conversation history turns to include (default: from env or 3)",
)
# Search parameters
parser.add_argument(
"--top-k",
type=int,
default=get_env_value("TOP_K", 50, int),
help="Number of most similar results to return (default: from env or 50)",
)
parser.add_argument(
"--cosine-threshold",
type=float,
default=get_env_value("COSINE_THRESHOLD", 0.4, float),
help="Cosine similarity threshold (default: from env or 0.4)",
)
2025-01-28 15:03:26 +01:00
parser.add_argument(
"--simulated-model-name",
2025-01-28 15:32:41 +01:00
type=str,
2025-01-28 18:20:45 +01:00
default=get_env_value(
"SIMULATED_MODEL_NAME", ollama_server_infos.LIGHTRAG_MODEL
),
2025-01-28 15:03:26 +01:00
help="Number of conversation history turns to include (default: from env or 3)",
)
args = parser.parse_args()
2025-01-28 15:30:36 +01:00
ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name
2025-01-28 15:03:26 +01:00
return args
class DocumentManager:
"""Handles document operations and tracking"""
2025-01-14 23:11:23 +01:00
def __init__(
self,
input_dir: str,
supported_extensions: tuple = (".txt", ".md", ".pdf", ".docx", ".pptx", "xlsx"),
2025-01-14 23:11:23 +01:00
):
self.input_dir = Path(input_dir)
self.supported_extensions = supported_extensions
self.indexed_files = set()
# Create input directory if it doesn't exist
self.input_dir.mkdir(parents=True, exist_ok=True)
def scan_directory_for_new_files(self) -> List[Path]:
"""Scan input directory for new files"""
new_files = []
for ext in self.supported_extensions:
for file_path in self.input_dir.rglob(f"*{ext}"):
if file_path not in self.indexed_files:
new_files.append(file_path)
return new_files
def scan_directory(self) -> List[Path]:
"""Scan input directory for new files"""
new_files = []
for ext in self.supported_extensions:
for file_path in self.input_dir.rglob(f"*{ext}"):
new_files.append(file_path)
return new_files
def mark_as_indexed(self, file_path: Path):
"""Mark a file as indexed"""
self.indexed_files.add(file_path)
def is_supported_file(self, filename: str) -> bool:
"""Check if file type is supported"""
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
# Pydantic models
class SearchMode(str, Enum):
naive = "naive"
local = "local"
global_ = "global"
hybrid = "hybrid"
mix = "mix"
class OllamaMessage(BaseModel):
role: str
content: str
images: Optional[List[str]] = None
class OllamaChatRequest(BaseModel):
2025-01-28 15:30:36 +01:00
model: str = ollama_server_infos.LIGHTRAG_MODEL
messages: List[OllamaMessage]
stream: bool = True # Default to streaming mode
options: Optional[Dict[str, Any]] = None
system: Optional[str] = None
class OllamaChatResponse(BaseModel):
model: str
created_at: str
message: OllamaMessage
done: bool
class OllamaGenerateRequest(BaseModel):
2025-01-28 15:30:36 +01:00
model: str = ollama_server_infos.LIGHTRAG_MODEL
prompt: str
system: Optional[str] = None
stream: bool = False
options: Optional[Dict[str, Any]] = None
class OllamaGenerateResponse(BaseModel):
model: str
created_at: str
response: str
done: bool
context: Optional[List[int]]
total_duration: Optional[int]
load_duration: Optional[int]
prompt_eval_count: Optional[int]
prompt_eval_duration: Optional[int]
eval_count: Optional[int]
eval_duration: Optional[int]
class OllamaVersionResponse(BaseModel):
version: str
class OllamaModelDetails(BaseModel):
parent_model: str
format: str
family: str
families: List[str]
parameter_size: str
quantization_level: str
class OllamaModel(BaseModel):
name: str
model: str
size: int
digest: str
modified_at: str
details: OllamaModelDetails
class OllamaTagResponse(BaseModel):
models: List[OllamaModel]
class QueryRequest(BaseModel):
query: str
mode: SearchMode = SearchMode.hybrid
stream: bool = False
only_need_context: bool = False
class QueryResponse(BaseModel):
response: str
class InsertTextRequest(BaseModel):
text: str
description: Optional[str] = None
class InsertResponse(BaseModel):
status: str
message: str
document_count: int
2025-01-04 02:23:39 +01:00
def get_api_key_dependency(api_key: Optional[str]):
if not api_key:
# If no API key is configured, return a dummy dependency that always succeeds
async def no_auth():
return None
2025-01-04 02:23:39 +01:00
return no_auth
2025-01-04 02:23:39 +01:00
# If API key is configured, use proper authentication
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
2025-01-04 02:23:39 +01:00
async def api_key_auth(api_key_header_value: str | None = Security(api_key_header)):
if not api_key_header_value:
raise HTTPException(
2025-01-04 02:23:39 +01:00
status_code=HTTP_403_FORBIDDEN, detail="API Key required"
)
if api_key_header_value != api_key:
raise HTTPException(
2025-01-04 02:23:39 +01:00
status_code=HTTP_403_FORBIDDEN, detail="Invalid API Key"
)
return api_key_header_value
2025-01-04 02:23:39 +01:00
return api_key_auth
def create_app(args):
# Verify that bindings are correctly setup
if args.llm_binding not in [
"lollms",
"ollama",
"openai",
"openai-ollama",
"azure_openai",
]:
2025-01-10 20:30:58 +01:00
raise Exception("llm binding not supported")
if args.embedding_binding not in ["lollms", "ollama", "openai", "azure_openai"]:
2025-01-10 20:30:58 +01:00
raise Exception("embedding binding not supported")
# Set default hosts if not provided
if args.llm_binding_host is None:
args.llm_binding_host = get_default_host(args.llm_binding)
2025-01-26 05:10:57 +08:00
if args.embedding_binding_host is None:
args.embedding_binding_host = get_default_host(args.embedding_binding)
2025-01-11 01:35:49 +01:00
# Add SSL validation
if args.ssl:
if not args.ssl_certfile or not args.ssl_keyfile:
2025-01-11 01:37:07 +01:00
raise Exception(
"SSL certificate and key files must be provided when SSL is enabled"
)
2025-01-11 01:35:49 +01:00
if not os.path.exists(args.ssl_certfile):
raise Exception(f"SSL certificate file not found: {args.ssl_certfile}")
if not os.path.exists(args.ssl_keyfile):
raise Exception(f"SSL key file not found: {args.ssl_keyfile}")
2025-01-11 01:37:07 +01:00
# Setup logging
logging.basicConfig(
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
)
# Check if API key is provided either through env var or args
api_key = os.getenv("LIGHTRAG_API_KEY") or args.key
2025-01-04 02:23:39 +01:00
# Initialize document manager
doc_manager = DocumentManager(args.input_dir)
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Lifespan context manager for startup and shutdown events"""
# Startup logic
2025-01-25 00:17:22 +01:00
if args.auto_scan_at_startup:
try:
new_files = doc_manager.scan_directory_for_new_files()
2025-01-25 00:17:22 +01:00
for file_path in new_files:
try:
await index_file(file_path)
except Exception as e:
trace_exception(e)
logging.error(f"Error indexing file {file_path}: {str(e)}")
ASCIIColors.info(
f"Indexed {len(new_files)} documents from {args.input_dir}"
)
2025-01-25 00:17:22 +01:00
except Exception as e:
logging.error(f"Error during startup indexing: {str(e)}")
yield
# Cleanup logic (if needed)
pass
# Initialize FastAPI
app = FastAPI(
title="LightRAG API",
2025-01-04 02:23:39 +01:00
description="API for querying text using LightRAG with separate storage and input directories"
+ "(With authentication)"
if api_key
else "",
version=__api_version__,
2025-01-04 02:23:39 +01:00
openapi_tags=[{"name": "api"}],
2025-01-21 01:03:37 +08:00
lifespan=lifespan,
)
2025-01-04 02:23:39 +01:00
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Create the optional API key dependency
optional_api_key = get_api_key_dependency(api_key)
# Create working directory if it doesn't exist
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
if args.llm_binding == "lollms" or args.embedding_binding == "lollms":
from lightrag.llm.lollms import lollms_model_complete, lollms_embed
if args.llm_binding == "ollama" or args.embedding_binding == "ollama":
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
if args.llm_binding == "openai" or args.embedding_binding == "openai":
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
2025-01-25 16:57:47 +08:00
if args.llm_binding == "azure_openai" or args.embedding_binding == "azure_openai":
from lightrag.llm.azure_openai import (
azure_openai_complete_if_cache,
azure_openai_embed,
)
if args.llm_binding_host == "openai-ollama" or args.embedding_binding == "ollama":
2025-01-26 09:13:11 +08:00
from lightrag.llm.openai import openai_complete_if_cache
from lightrag.llm.ollama import ollama_embed
async def openai_alike_model_complete(
2025-01-19 08:07:26 +08:00
prompt,
system_prompt=None,
history_messages=[],
keyword_extraction=False,
**kwargs,
) -> str:
return await openai_complete_if_cache(
args.llm_model,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
base_url=args.llm_binding_host,
api_key=args.llm_binding_api_key,
**kwargs,
)
async def azure_openai_model_complete(
2025-01-19 08:07:26 +08:00
prompt,
system_prompt=None,
history_messages=[],
keyword_extraction=False,
**kwargs,
) -> str:
return await azure_openai_complete_if_cache(
args.llm_model,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
base_url=args.llm_binding_host,
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version=os.getenv("AZURE_OPENAI_API_VERSION", "2024-08-01-preview"),
**kwargs,
)
embedding_func = EmbeddingFunc(
embedding_dim=args.embedding_dim,
max_token_size=args.max_embed_tokens,
func=lambda texts: lollms_embed(
texts,
embed_model=args.embedding_model,
host=args.embedding_binding_host,
2025-01-20 00:26:28 +01:00
api_key=args.embedding_binding_api_key,
)
if args.embedding_binding == "lollms"
else ollama_embed(
texts,
embed_model=args.embedding_model,
host=args.embedding_binding_host,
2025-01-20 00:26:28 +01:00
api_key=args.embedding_binding_api_key,
)
if args.embedding_binding == "ollama"
else azure_openai_embed(
texts,
model=args.embedding_model, # no host is used for openai,
2025-01-20 00:26:28 +01:00
api_key=args.embedding_binding_api_key,
)
if args.embedding_binding == "azure_openai"
else openai_embed(
texts,
model=args.embedding_model, # no host is used for openai,
2025-01-20 00:26:28 +01:00
api_key=args.embedding_binding_api_key,
),
)
# Initialize RAG
if args.llm_binding in ["lollms", "ollama", "openai-ollama"]:
rag = LightRAG(
working_dir=args.working_dir,
llm_model_func=lollms_model_complete
2025-01-11 01:37:07 +01:00
if args.llm_binding == "lollms"
else ollama_model_complete
if args.llm_binding == "ollama"
else openai_alike_model_complete,
llm_model_name=args.llm_model,
llm_model_max_async=args.max_async,
llm_model_max_token_size=args.max_tokens,
chunk_token_size=int(args.chunk_size),
chunk_overlap_token_size=int(args.chunk_overlap_size),
llm_model_kwargs={
"host": args.llm_binding_host,
"timeout": args.timeout,
"options": {"num_ctx": args.max_tokens},
2025-01-20 00:26:28 +01:00
"api_key": args.llm_binding_api_key,
}
if args.llm_binding == "lollms" or args.llm_binding == "ollama"
else {},
embedding_func=embedding_func,
2025-01-28 15:30:36 +01:00
kv_storage=ollama_server_infos.KV_STORAGE,
graph_storage=ollama_server_infos.GRAPH_STORAGE,
vector_storage=ollama_server_infos.VECTOR_STORAGE,
doc_status_storage=ollama_server_infos.DOC_STATUS_STORAGE,
vector_db_storage_cls_kwargs={
"cosine_better_than_threshold": args.cosine_threshold
},
enable_llm_cache_for_entity_extract=False, # set to True for debuging to reduce llm fee
embedding_cache_config={
"enabled": True,
"similarity_threshold": 0.95,
"use_llm_check": False,
},
2025-01-19 08:07:26 +08:00
)
else:
rag = LightRAG(
working_dir=args.working_dir,
llm_model_func=azure_openai_model_complete
2025-01-11 01:37:07 +01:00
if args.llm_binding == "azure_openai"
else openai_alike_model_complete,
chunk_token_size=int(args.chunk_size),
chunk_overlap_token_size=int(args.chunk_overlap_size),
llm_model_kwargs={
"timeout": args.timeout,
},
llm_model_name=args.llm_model,
llm_model_max_async=args.max_async,
llm_model_max_token_size=args.max_tokens,
embedding_func=embedding_func,
2025-01-28 15:30:36 +01:00
kv_storage=ollama_server_infos.KV_STORAGE,
graph_storage=ollama_server_infos.GRAPH_STORAGE,
vector_storage=ollama_server_infos.VECTOR_STORAGE,
doc_status_storage=ollama_server_infos.DOC_STATUS_STORAGE,
vector_db_storage_cls_kwargs={
"cosine_better_than_threshold": args.cosine_threshold
},
enable_llm_cache_for_entity_extract=False, # set to True for debuging to reduce llm fee
embedding_cache_config={
"enabled": True,
"similarity_threshold": 0.95,
"use_llm_check": False,
},
)
2025-01-14 23:08:39 +01:00
async def index_file(file_path: Union[str, Path]) -> None:
2025-01-14 23:11:23 +01:00
"""Index all files inside the folder with support for multiple file formats
2025-01-14 23:08:39 +01:00
Args:
file_path: Path to the file to be indexed (str or Path object)
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Raises:
ValueError: If file format is not supported
FileNotFoundError: If file doesn't exist
"""
if not pm.is_installed("aiofiles"):
pm.install("aiofiles")
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
# Convert to Path object if string
file_path = Path(file_path)
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
# Check if file exists
if not file_path.exists():
raise FileNotFoundError(f"File not found: {file_path}")
content = ""
# Get file extension in lowercase
ext = file_path.suffix.lower()
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
match ext:
case ".txt" | ".md":
# Text files handling
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
content = await f.read()
2025-01-14 23:11:23 +01:00
2025-02-01 01:19:32 +01:00
case ".pdf" | ".docx" | ".pptx" | ".xlsx":
if not pm.is_installed("docling"):
pm.install("docling")
from docling.document_converter import DocumentConverter
2025-02-01 01:15:06 +01:00
converter = DocumentConverter()
result = converter.convert(file_path)
content = result.document.export_to_markdown()
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
case _:
raise ValueError(f"Unsupported file format: {ext}")
# Insert content into RAG system
if content:
await rag.ainsert(content)
doc_manager.mark_as_indexed(file_path)
logging.info(f"Successfully indexed file: {file_path}")
else:
logging.warning(f"No content extracted from file: {file_path}")
2025-01-17 01:36:16 +01:00
@app.post("/documents/scan", dependencies=[Depends(optional_api_key)])
2025-01-31 11:19:12 +01:00
async def scan_for_new_documents(background_tasks: BackgroundTasks):
"""Trigger the scanning process"""
global scan_progress
2025-01-31 23:35:42 +08:00
2025-01-31 11:19:12 +01:00
with progress_lock:
if scan_progress["is_scanning"]:
return {"status": "already_scanning"}
2025-01-31 23:35:42 +08:00
2025-01-31 11:19:12 +01:00
scan_progress["is_scanning"] = True
scan_progress["indexed_count"] = 0
scan_progress["progress"] = 0
2025-01-31 23:35:42 +08:00
2025-01-31 11:19:12 +01:00
# Start the scanning process in the background
background_tasks.add_task(run_scanning_process)
2025-01-31 23:35:42 +08:00
2025-01-31 11:19:12 +01:00
return {"status": "scanning_started"}
2025-01-31 23:35:42 +08:00
2025-01-31 11:19:12 +01:00
async def run_scanning_process():
"""Background task to scan and index documents"""
global scan_progress
2025-01-31 23:35:42 +08:00
try:
new_files = doc_manager.scan_directory_for_new_files()
scan_progress["total_files"] = len(new_files)
2025-01-31 23:35:42 +08:00
for file_path in new_files:
try:
with progress_lock:
scan_progress["current_file"] = os.path.basename(file_path)
2025-01-31 23:35:42 +08:00
2025-01-14 23:08:39 +01:00
await index_file(file_path)
2025-01-31 23:35:42 +08:00
with progress_lock:
scan_progress["indexed_count"] += 1
2025-01-30 23:29:21 +01:00
scan_progress["progress"] = (
scan_progress["indexed_count"]
/ scan_progress["total_files"]
) * 100
2025-01-31 23:35:42 +08:00
except Exception as e:
logging.error(f"Error indexing file {file_path}: {str(e)}")
2025-01-31 23:35:42 +08:00
except Exception as e:
2025-01-31 11:19:12 +01:00
logging.error(f"Error during scanning process: {str(e)}")
finally:
with progress_lock:
scan_progress["is_scanning"] = False
@app.get("/documents/scan-progress")
async def get_scan_progress():
"""Get the current scanning progress"""
with progress_lock:
return scan_progress
@app.post("/documents/upload", dependencies=[Depends(optional_api_key)])
async def upload_to_input_dir(file: UploadFile = File(...)):
"""
Endpoint for uploading a file to the input directory and indexing it.
2025-01-24 21:01:34 +01:00
This API endpoint accepts a file through an HTTP POST request, checks if the
uploaded file is of a supported type, saves it in the specified input directory,
indexes it for retrieval, and returns a success status with relevant details.
2025-01-24 21:01:34 +01:00
Parameters:
file (UploadFile): The file to be uploaded. It must have an allowed extension as per
`doc_manager.supported_extensions`.
2025-01-24 21:01:34 +01:00
Returns:
2025-01-24 21:01:34 +01:00
dict: A dictionary containing the upload status ("success"),
a message detailing the operation result, and
the total number of indexed documents.
2025-01-24 21:01:34 +01:00
Raises:
HTTPException: If the file type is not supported, it raises a 400 Bad Request error.
If any other exception occurs during the file handling or indexing,
it raises a 500 Internal Server Error with details about the exception.
2025-01-24 21:01:34 +01:00
"""
try:
if not doc_manager.is_supported_file(file.filename):
raise HTTPException(
status_code=400,
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
)
file_path = doc_manager.input_dir / file.filename
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Immediately index the uploaded file
2025-01-14 23:08:39 +01:00
await index_file(file_path)
return {
"status": "success",
"message": f"File uploaded and indexed: {file.filename}",
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
2025-01-04 02:23:39 +01:00
@app.post(
"/query", response_model=QueryResponse, dependencies=[Depends(optional_api_key)]
)
async def query_text(request: QueryRequest):
"""
Handle a POST request at the /query endpoint to process user queries using RAG capabilities.
2025-01-24 21:01:34 +01:00
Parameters:
request (QueryRequest): A Pydantic model containing the following fields:
- query (str): The text of the user's query.
- mode (ModeEnum): Optional. Specifies the mode of retrieval augmentation.
- stream (bool): Optional. Determines if the response should be streamed.
- only_need_context (bool): Optional. If true, returns only the context without further processing.
2025-01-24 21:01:34 +01:00
Returns:
2025-01-24 21:01:34 +01:00
QueryResponse: A Pydantic model containing the result of the query processing.
If a string is returned (e.g., cache hit), it's directly returned.
Otherwise, an async generator may be used to build the response.
2025-01-24 21:01:34 +01:00
Raises:
HTTPException: Raised when an error occurs during the request handling process,
with status code 500 and detail containing the exception message.
2025-01-24 21:01:34 +01:00
"""
try:
response = await rag.aquery(
request.query,
2024-12-26 23:39:10 +01:00
param=QueryParam(
mode=request.mode,
stream=request.stream,
only_need_context=request.only_need_context,
top_k=args.top_k,
2024-12-26 23:39:10 +01:00
),
)
# If response is a string (e.g. cache hit), return directly
if isinstance(response, str):
return QueryResponse(response=response)
# If it's an async generator, decide whether to stream based on stream parameter
if request.stream:
result = ""
async for chunk in response:
result += chunk
return QueryResponse(response=result)
else:
result = ""
async for chunk in response:
result += chunk
return QueryResponse(response=result)
except Exception as e:
trace_exception(e)
raise HTTPException(status_code=500, detail=str(e))
@app.post("/query/stream", dependencies=[Depends(optional_api_key)])
async def query_text_stream(request: QueryRequest):
"""
This endpoint performs a retrieval-augmented generation (RAG) query and streams the response.
Args:
request (QueryRequest): The request object containing the query parameters.
optional_api_key (Optional[str], optional): An optional API key for authentication. Defaults to None.
Returns:
StreamingResponse: A streaming response containing the RAG query results.
2025-01-24 21:01:34 +01:00
"""
try:
response = await rag.aquery( # Use aquery instead of query, and add await
2024-12-26 23:39:10 +01:00
request.query,
param=QueryParam(
mode=request.mode,
stream=True,
only_need_context=request.only_need_context,
top_k=args.top_k,
2024-12-26 23:39:10 +01:00
),
)
from fastapi.responses import StreamingResponse
async def stream_generator():
if isinstance(response, str):
# If it's a string, send it all at once
yield f"{json.dumps({'response': response})}\n"
else:
# If it's an async generator, send chunks one by one
try:
async for chunk in response:
if chunk: # Only send non-empty content
yield f"{json.dumps({'response': chunk})}\n"
except Exception as e:
logging.error(f"Streaming error: {str(e)}")
yield f"{json.dumps({'error': str(e)})}\n"
return StreamingResponse(
stream_generator(),
media_type="application/x-ndjson",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"Content-Type": "application/x-ndjson",
"Access-Control-Allow-Origin": "*",
"Access-Control-Allow-Methods": "POST, OPTIONS",
"Access-Control-Allow-Headers": "Content-Type",
"X-Accel-Buffering": "no", # Disable Nginx buffering
},
)
except Exception as e:
trace_exception(e)
raise HTTPException(status_code=500, detail=str(e))
2025-01-04 02:23:39 +01:00
@app.post(
"/documents/text",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_text(request: InsertTextRequest):
"""
Insert text into the Retrieval-Augmented Generation (RAG) system.
This endpoint allows you to insert text data into the RAG system for later retrieval and use in generating responses.
Args:
request (InsertTextRequest): The request body containing the text to be inserted.
Returns:
InsertResponse: A response object containing the status of the operation, a message, and the number of documents inserted.
2025-01-24 21:01:34 +01:00
"""
try:
2025-01-12 12:56:08 +01:00
await rag.ainsert(request.text)
return InsertResponse(
status="success",
message="Text successfully inserted",
document_count=1,
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
2025-01-14 23:11:23 +01:00
2025-01-04 02:23:39 +01:00
@app.post(
"/documents/file",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
2025-01-14 23:08:39 +01:00
"""Insert a file directly into the RAG system
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Args:
file: Uploaded file
description: Optional description of the file
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Returns:
InsertResponse: Status of the insertion operation
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Raises:
HTTPException: For unsupported file types or processing errors
"""
try:
2025-01-14 23:08:39 +01:00
content = ""
# Get file extension in lowercase
ext = Path(file.filename).suffix.lower()
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
match ext:
case ".txt" | ".md":
# Text files handling
text_content = await file.read()
content = text_content.decode("utf-8")
2025-01-14 23:11:23 +01:00
2025-02-01 01:19:32 +01:00
case ".pdf" | ".docx" | ".pptx" | ".xlsx":
if not pm.is_installed("docling"):
pm.install("docling")
from docling.document_converter import DocumentConverter
2025-02-01 01:15:06 +01:00
2025-02-01 01:19:32 +01:00
# Create a temporary file to save the uploaded content
temp_path = Path("temp") / file.filename
temp_path.parent.mkdir(exist_ok=True)
2025-01-14 23:11:23 +01:00
2025-02-01 01:19:32 +01:00
# Save the uploaded file
with temp_path.open("wb") as f:
f.write(await file.read())
2025-02-01 01:15:06 +01:00
2025-02-01 01:19:32 +01:00
try:
converter = DocumentConverter()
result = converter.convert(str(temp_path))
content = result.document.export_to_markdown()
finally:
# Clean up the temporary file
temp_path.unlink()
2025-01-14 23:08:39 +01:00
# Insert content into RAG system
if content:
# Add description if provided
if description:
content = f"{description}\n\n{content}"
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
await rag.ainsert(content)
logging.info(f"Successfully indexed file: {file.filename}")
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
return InsertResponse(
status="success",
message=f"File '{file.filename}' successfully inserted",
document_count=1,
)
else:
raise HTTPException(
status_code=400,
2025-01-14 23:08:39 +01:00
detail="No content could be extracted from the file",
)
except UnicodeDecodeError:
raise HTTPException(status_code=400, detail="File encoding not supported")
except Exception as e:
2025-01-14 23:08:39 +01:00
logging.error(f"Error processing file {file.filename}: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
2025-01-14 23:11:23 +01:00
2025-01-04 02:23:39 +01:00
@app.post(
"/documents/batch",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_batch(files: List[UploadFile] = File(...)):
2025-01-14 23:08:39 +01:00
"""Process multiple files in batch mode
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Args:
files: List of files to process
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Returns:
InsertResponse: Status of the batch insertion operation
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Raises:
HTTPException: For processing errors
"""
try:
inserted_count = 0
failed_files = []
for file in files:
try:
2025-01-14 23:08:39 +01:00
content = ""
ext = Path(file.filename).suffix.lower()
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
match ext:
case ".txt" | ".md":
text_content = await file.read()
content = text_content.decode("utf-8")
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
case ".pdf":
if not pm.is_installed("pypdf2"):
pm.install("pypdf2")
from PyPDF2 import PdfReader
2025-01-14 23:08:39 +01:00
from io import BytesIO
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
pdf_content = await file.read()
pdf_file = BytesIO(pdf_content)
reader = PdfReader(pdf_file)
for page in reader.pages:
content += page.extract_text() + "\n"
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
case ".docx":
if not pm.is_installed("docx"):
pm.install("docx")
from docx import Document
from io import BytesIO
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
docx_content = await file.read()
docx_file = BytesIO(docx_content)
doc = Document(docx_file)
2025-01-14 23:11:23 +01:00
content = "\n".join(
[paragraph.text for paragraph in doc.paragraphs]
)
2025-01-14 23:08:39 +01:00
case ".pptx":
if not pm.is_installed("pptx"):
pm.install("pptx")
2025-01-27 16:12:30 +08:00
from pptx import Presentation # type: ignore
2025-01-14 23:08:39 +01:00
from io import BytesIO
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
pptx_content = await file.read()
pptx_file = BytesIO(pptx_content)
prs = Presentation(pptx_file)
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
content += shape.text + "\n"
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
case _:
failed_files.append(f"{file.filename} (unsupported type)")
continue
if content:
await rag.ainsert(content)
inserted_count += 1
2025-01-14 23:08:39 +01:00
logging.info(f"Successfully indexed file: {file.filename}")
else:
2025-01-14 23:08:39 +01:00
failed_files.append(f"{file.filename} (no content extracted)")
except UnicodeDecodeError:
failed_files.append(f"{file.filename} (encoding error)")
except Exception as e:
failed_files.append(f"{file.filename} ({str(e)})")
2025-01-14 23:08:39 +01:00
logging.error(f"Error processing file {file.filename}: {str(e)}")
# Prepare status message
if inserted_count == len(files):
status = "success"
status_message = f"Successfully inserted all {inserted_count} documents"
elif inserted_count > 0:
status = "partial_success"
status_message = f"Successfully inserted {inserted_count} out of {len(files)} documents"
if failed_files:
status_message += f". Failed files: {', '.join(failed_files)}"
else:
status = "failure"
status_message = "No documents were successfully inserted"
if failed_files:
status_message += f". Failed files: {', '.join(failed_files)}"
return InsertResponse(
2025-01-14 23:08:39 +01:00
status=status,
message=status_message,
2025-01-14 23:08:39 +01:00
document_count=inserted_count,
)
2025-01-14 23:08:39 +01:00
except Exception as e:
2025-01-14 23:08:39 +01:00
logging.error(f"Batch processing error: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
2025-01-04 02:23:39 +01:00
@app.delete(
"/documents",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def clear_documents():
"""
Clear all documents from the LightRAG system.
This endpoint deletes all text chunks, entities vector database, and relationships vector database,
effectively clearing all documents from the LightRAG system.
Returns:
InsertResponse: A response object containing the status, message, and the new document count (0 in this case).
"""
try:
rag.text_chunks = []
rag.entities_vdb = None
rag.relationships_vdb = None
return InsertResponse(
status="success",
message="All documents cleared successfully",
document_count=0,
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# query all graph labels
@app.get("/graph/label/list")
async def get_graph_labels():
return await rag.get_graph_labels()
# query all graph
@app.get("/graphs")
async def get_graphs(label: str):
return await rag.get_graps(nodel_label=label, max_depth=100)
# Ollama compatible API endpoints
# -------------------------------------------------
@app.get("/api/version")
async def get_version():
"""Get Ollama version information"""
return OllamaVersionResponse(version="0.5.4")
@app.get("/api/tags")
async def get_tags():
"""Get available models"""
return OllamaTagResponse(
models=[
{
2025-01-28 15:30:36 +01:00
"name": ollama_server_infos.LIGHTRAG_MODEL,
"model": ollama_server_infos.LIGHTRAG_MODEL,
"size": ollama_server_infos.LIGHTRAG_SIZE,
"digest": ollama_server_infos.LIGHTRAG_DIGEST,
"modified_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"details": {
"parent_model": "",
"format": "gguf",
2025-01-28 15:30:36 +01:00
"family": ollama_server_infos.LIGHTRAG_NAME,
"families": [ollama_server_infos.LIGHTRAG_NAME],
"parameter_size": "13B",
"quantization_level": "Q4_0",
},
}
]
)
def parse_query_mode(query: str) -> tuple[str, SearchMode]:
"""Parse query prefix to determine search mode
Returns tuple of (cleaned_query, search_mode)
"""
mode_map = {
"/local ": SearchMode.local,
"/global ": SearchMode.global_, # global_ is used because 'global' is a Python keyword
"/naive ": SearchMode.naive,
"/hybrid ": SearchMode.hybrid,
"/mix ": SearchMode.mix,
}
for prefix, mode in mode_map.items():
if query.startswith(prefix):
# After removing prefix an leading spaces
cleaned_query = query[len(prefix) :].lstrip()
return cleaned_query, mode
return query, SearchMode.hybrid
@app.post("/api/generate")
async def generate(raw_request: Request, request: OllamaGenerateRequest):
2025-01-26 11:36:24 +08:00
"""Handle generate completion requests
For compatiblity purpuse, the request is not processed by LightRAG,
and will be handled by underlying LLM model.
"""
try:
query = request.prompt
start_time = time.time_ns()
prompt_tokens = estimate_tokens(query)
if request.system:
rag.llm_model_kwargs["system_prompt"] = request.system
if request.stream:
from fastapi.responses import StreamingResponse
response = await rag.llm_model_func(
query, stream=True, **rag.llm_model_kwargs
)
async def stream_generator():
try:
first_chunk_time = None
last_chunk_time = None
total_response = ""
# Ensure response is an async generator
if isinstance(response, str):
# If it's a string, send in two parts
first_chunk_time = time.time_ns()
last_chunk_time = first_chunk_time
total_response = response
data = {
2025-01-28 15:30:36 +01:00
"model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"response": response,
"done": False,
}
yield f"{json.dumps(data, ensure_ascii=False)}\n"
completion_tokens = estimate_tokens(total_response)
total_time = last_chunk_time - start_time
prompt_eval_time = first_chunk_time - start_time
eval_time = last_chunk_time - first_chunk_time
data = {
2025-01-28 15:30:36 +01:00
"model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"done": True,
"total_duration": total_time,
"load_duration": 0,
"prompt_eval_count": prompt_tokens,
"prompt_eval_duration": prompt_eval_time,
"eval_count": completion_tokens,
"eval_duration": eval_time,
}
yield f"{json.dumps(data, ensure_ascii=False)}\n"
else:
async for chunk in response:
if chunk:
if first_chunk_time is None:
first_chunk_time = time.time_ns()
last_chunk_time = time.time_ns()
total_response += chunk
data = {
2025-01-28 15:30:36 +01:00
"model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"response": chunk,
"done": False,
}
yield f"{json.dumps(data, ensure_ascii=False)}\n"
completion_tokens = estimate_tokens(total_response)
total_time = last_chunk_time - start_time
prompt_eval_time = first_chunk_time - start_time
eval_time = last_chunk_time - first_chunk_time
data = {
2025-01-28 15:30:36 +01:00
"model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"done": True,
"total_duration": total_time,
"load_duration": 0,
"prompt_eval_count": prompt_tokens,
"prompt_eval_duration": prompt_eval_time,
"eval_count": completion_tokens,
"eval_duration": eval_time,
}
yield f"{json.dumps(data, ensure_ascii=False)}\n"
return
except Exception as e:
logging.error(f"Error in stream_generator: {str(e)}")
raise
return StreamingResponse(
stream_generator(),
media_type="application/x-ndjson",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"Content-Type": "application/x-ndjson",
"Access-Control-Allow-Origin": "*",
"Access-Control-Allow-Methods": "POST, OPTIONS",
"Access-Control-Allow-Headers": "Content-Type",
},
)
else:
first_chunk_time = time.time_ns()
response_text = await rag.llm_model_func(
query, stream=False, **rag.llm_model_kwargs
)
last_chunk_time = time.time_ns()
if not response_text:
response_text = "No response generated"
completion_tokens = estimate_tokens(str(response_text))
total_time = last_chunk_time - start_time
prompt_eval_time = first_chunk_time - start_time
eval_time = last_chunk_time - first_chunk_time
return {
2025-01-28 15:30:36 +01:00
"model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"response": str(response_text),
"done": True,
"total_duration": total_time,
"load_duration": 0,
"prompt_eval_count": prompt_tokens,
"prompt_eval_duration": prompt_eval_time,
"eval_count": completion_tokens,
"eval_duration": eval_time,
}
except Exception as e:
trace_exception(e)
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/chat")
async def chat(raw_request: Request, request: OllamaChatRequest):
2025-01-26 11:36:24 +08:00
"""Process chat completion requests.
Routes user queries through LightRAG by selecting query mode based on prefix indicators.
Detects and forwards OpenWebUI session-related requests (for meta data generation task) directly to LLM.
"""
try:
# Get all messages
messages = request.messages
if not messages:
raise HTTPException(status_code=400, detail="No messages provided")
# Get the last message as query and previous messages as history
query = messages[-1].content
# Convert OllamaMessage objects to dictionaries
conversation_history = [
{"role": msg.role, "content": msg.content} for msg in messages[:-1]
]
# Check for query prefix
cleaned_query, mode = parse_query_mode(query)
start_time = time.time_ns()
prompt_tokens = estimate_tokens(cleaned_query)
param_dict = {
"mode": mode,
"stream": request.stream,
"only_need_context": False,
"conversation_history": conversation_history,
"top_k": args.top_k,
}
if args.history_turns is not None:
param_dict["history_turns"] = args.history_turns
query_param = QueryParam(**param_dict)
if request.stream:
from fastapi.responses import StreamingResponse
response = await rag.aquery( # Need await to get async generator
cleaned_query, param=query_param
)
async def stream_generator():
try:
first_chunk_time = None
last_chunk_time = None
total_response = ""
# Ensure response is an async generator
if isinstance(response, str):
# If it's a string, send in two parts
first_chunk_time = time.time_ns()
last_chunk_time = first_chunk_time
total_response = response
data = {
2025-01-28 15:30:36 +01:00
"model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"message": {
"role": "assistant",
"content": response,
"images": None,
},
"done": False,
}
yield f"{json.dumps(data, ensure_ascii=False)}\n"
completion_tokens = estimate_tokens(total_response)
total_time = last_chunk_time - start_time
prompt_eval_time = first_chunk_time - start_time
eval_time = last_chunk_time - first_chunk_time
data = {
2025-01-28 15:30:36 +01:00
"model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"done": True,
"total_duration": total_time,
"load_duration": 0,
"prompt_eval_count": prompt_tokens,
"prompt_eval_duration": prompt_eval_time,
"eval_count": completion_tokens,
"eval_duration": eval_time,
}
yield f"{json.dumps(data, ensure_ascii=False)}\n"
else:
async for chunk in response:
if chunk:
if first_chunk_time is None:
first_chunk_time = time.time_ns()
last_chunk_time = time.time_ns()
total_response += chunk
data = {
2025-01-28 15:30:36 +01:00
"model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"message": {
"role": "assistant",
"content": chunk,
"images": None,
},
"done": False,
}
yield f"{json.dumps(data, ensure_ascii=False)}\n"
completion_tokens = estimate_tokens(total_response)
total_time = last_chunk_time - start_time
prompt_eval_time = first_chunk_time - start_time
eval_time = last_chunk_time - first_chunk_time
data = {
2025-01-28 15:30:36 +01:00
"model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"done": True,
"total_duration": total_time,
"load_duration": 0,
"prompt_eval_count": prompt_tokens,
"prompt_eval_duration": prompt_eval_time,
"eval_count": completion_tokens,
"eval_duration": eval_time,
}
yield f"{json.dumps(data, ensure_ascii=False)}\n"
return # Ensure the generator ends immediately after sending the completion marker
except Exception as e:
logging.error(f"Error in stream_generator: {str(e)}")
raise
return StreamingResponse(
stream_generator(),
media_type="application/x-ndjson",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"Content-Type": "application/x-ndjson",
"Access-Control-Allow-Origin": "*",
"Access-Control-Allow-Methods": "POST, OPTIONS",
"Access-Control-Allow-Headers": "Content-Type",
},
)
else:
first_chunk_time = time.time_ns()
# Determine if the request is from Open WebUI's session title and session keyword generation task
match_result = re.search(
r"\n<chat_history>\nUSER:", cleaned_query, re.MULTILINE
)
if match_result:
if request.system:
rag.llm_model_kwargs["system_prompt"] = request.system
response_text = await rag.llm_model_func(
cleaned_query, stream=False, **rag.llm_model_kwargs
)
else:
response_text = await rag.aquery(cleaned_query, param=query_param)
last_chunk_time = time.time_ns()
if not response_text:
response_text = "No response generated"
completion_tokens = estimate_tokens(str(response_text))
total_time = last_chunk_time - start_time
prompt_eval_time = first_chunk_time - start_time
eval_time = last_chunk_time - first_chunk_time
return {
2025-01-28 15:30:36 +01:00
"model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"message": {
"role": "assistant",
"content": str(response_text),
"images": None,
},
"done": True,
"total_duration": total_time,
"load_duration": 0,
"prompt_eval_count": prompt_tokens,
"prompt_eval_duration": prompt_eval_time,
"eval_count": completion_tokens,
"eval_duration": eval_time,
}
except Exception as e:
trace_exception(e)
raise HTTPException(status_code=500, detail=str(e))
2025-01-27 02:10:24 +01:00
@app.get("/documents", dependencies=[Depends(optional_api_key)])
2025-01-27 02:10:24 +01:00
async def documents():
"""Get current system status"""
return doc_manager.indexed_files
@app.get("/health", dependencies=[Depends(optional_api_key)])
async def get_status():
"""Get current system status"""
2025-01-27 12:02:22 +01:00
files = doc_manager.scan_directory()
return {
"status": "healthy",
"working_directory": str(args.working_dir),
"input_directory": str(args.input_dir),
"indexed_files": [str(f) for f in files],
2025-01-27 12:02:22 +01:00
"indexed_files_count": len(files),
"configuration": {
2025-01-10 20:30:58 +01:00
# LLM configuration binding/host address (if applicable)/model (if applicable)
"llm_binding": args.llm_binding,
"llm_binding_host": args.llm_binding_host,
"llm_model": args.llm_model,
# embedding model configuration binding/host address (if applicable)/model (if applicable)
"embedding_binding": args.embedding_binding,
"embedding_binding_host": args.embedding_binding_host,
"embedding_model": args.embedding_model,
"max_tokens": args.max_tokens,
2025-01-28 15:30:36 +01:00
"kv_storage": ollama_server_infos.KV_STORAGE,
"doc_status_storage": ollama_server_infos.DOC_STATUS_STORAGE,
"graph_storage": ollama_server_infos.GRAPH_STORAGE,
"vector_storage": ollama_server_infos.VECTOR_STORAGE,
},
}
2025-01-24 21:01:34 +01:00
# webui mount /webui/index.html
# app.mount(
# "/webui",
# StaticFiles(
# directory=Path(__file__).resolve().parent / "webui" / "static", html=True
# ),
# name="webui_static",
# )
2025-01-24 13:50:06 +01:00
# Serve the static files
2025-01-27 02:10:24 +01:00
static_dir = Path(__file__).parent / "static"
2025-01-24 13:50:06 +01:00
static_dir.mkdir(exist_ok=True)
app.mount("/", StaticFiles(directory=static_dir, html=True), name="static")
return app
2025-01-24 21:01:34 +01:00
def main():
args = parse_args()
import uvicorn
app = create_app(args)
2025-01-24 21:01:34 +01:00
display_splash_screen(args)
2025-01-11 01:35:49 +01:00
uvicorn_config = {
"app": app,
"host": args.host,
"port": args.port,
2025-01-11 01:37:07 +01:00
}
2025-01-11 01:35:49 +01:00
if args.ssl:
2025-01-11 01:37:07 +01:00
uvicorn_config.update(
{
"ssl_certfile": args.ssl_certfile,
"ssl_keyfile": args.ssl_keyfile,
}
)
2025-01-11 01:35:49 +01:00
uvicorn.run(**uvicorn_config)
2024-12-24 10:35:00 +01:00
if __name__ == "__main__":
main()