mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-24 09:20:17 +00:00
174 lines
3.6 KiB
Markdown
174 lines
3.6 KiB
Markdown
![]() |
# LightRAG
|
||
|
|
||
|
A lightweight Knowledge Graph Retrieval-Augmented Generation system with multiple LLM backend support.
|
||
|
|
||
|
## 🚀 Installation
|
||
|
|
||
|
### Prerequisites
|
||
|
- Python 3.10+
|
||
|
- Git
|
||
|
- Docker (optional for Docker deployment)
|
||
|
|
||
|
### Native Installation
|
||
|
|
||
|
1. Clone the repository:
|
||
|
```bash
|
||
|
# Linux/MacOS
|
||
|
git clone https://github.com/ParisNeo/LightRAG.git
|
||
|
cd LightRAG
|
||
|
```
|
||
|
```powershell
|
||
|
# Windows PowerShell
|
||
|
git clone https://github.com/ParisNeo/LightRAG.git
|
||
|
cd LightRAG
|
||
|
```
|
||
|
|
||
|
2. Configure your environment:
|
||
|
```bash
|
||
|
# Linux/MacOS
|
||
|
cp .env.example .env
|
||
|
# Edit .env with your preferred configuration
|
||
|
```
|
||
|
```powershell
|
||
|
# Windows PowerShell
|
||
|
Copy-Item .env.example .env
|
||
|
# Edit .env with your preferred configuration
|
||
|
```
|
||
|
|
||
|
3. Create and activate virtual environment:
|
||
|
```bash
|
||
|
# Linux/MacOS
|
||
|
python -m venv venv
|
||
|
source venv/bin/activate
|
||
|
```
|
||
|
```powershell
|
||
|
# Windows PowerShell
|
||
|
python -m venv venv
|
||
|
.\venv\Scripts\Activate
|
||
|
```
|
||
|
|
||
|
4. Install dependencies:
|
||
|
```bash
|
||
|
# Both platforms
|
||
|
pip install -r requirements.txt
|
||
|
```
|
||
|
|
||
|
## 🐳 Docker Deployment
|
||
|
|
||
|
Docker instructions work the same on all platforms with Docker Desktop installed.
|
||
|
|
||
|
1. Build and start the container:
|
||
|
```bash
|
||
|
docker-compose up -d
|
||
|
```
|
||
|
|
||
|
### Configuration Options
|
||
|
|
||
|
LightRAG can be configured using environment variables in the `.env` file:
|
||
|
|
||
|
#### Server Configuration
|
||
|
- `HOST`: Server host (default: 0.0.0.0)
|
||
|
- `PORT`: Server port (default: 9621)
|
||
|
|
||
|
#### LLM Configuration
|
||
|
- `LLM_BINDING`: LLM backend to use (lollms/ollama/openai)
|
||
|
- `LLM_BINDING_HOST`: LLM server host URL
|
||
|
- `LLM_MODEL`: Model name to use
|
||
|
|
||
|
#### Embedding Configuration
|
||
|
- `EMBEDDING_BINDING`: Embedding backend (lollms/ollama/openai)
|
||
|
- `EMBEDDING_BINDING_HOST`: Embedding server host URL
|
||
|
- `EMBEDDING_MODEL`: Embedding model name
|
||
|
|
||
|
#### RAG Configuration
|
||
|
- `MAX_ASYNC`: Maximum async operations
|
||
|
- `MAX_TOKENS`: Maximum token size
|
||
|
- `EMBEDDING_DIM`: Embedding dimensions
|
||
|
- `MAX_EMBED_TOKENS`: Maximum embedding token size
|
||
|
|
||
|
#### Security
|
||
|
- `LIGHTRAG_API_KEY`: API key for authentication
|
||
|
|
||
|
### Data Storage Paths
|
||
|
|
||
|
The system uses the following paths for data storage:
|
||
|
```
|
||
|
data/
|
||
|
├── rag_storage/ # RAG data persistence
|
||
|
└── inputs/ # Input documents
|
||
|
```
|
||
|
|
||
|
### Example Deployments
|
||
|
|
||
|
1. Using with Ollama:
|
||
|
```env
|
||
|
LLM_BINDING=ollama
|
||
|
LLM_BINDING_HOST=http://localhost:11434
|
||
|
LLM_MODEL=mistral
|
||
|
EMBEDDING_BINDING=ollama
|
||
|
EMBEDDING_BINDING_HOST=http://localhost:11434
|
||
|
EMBEDDING_MODEL=bge-m3
|
||
|
```
|
||
|
|
||
|
2. Using with OpenAI:
|
||
|
```env
|
||
|
LLM_BINDING=openai
|
||
|
LLM_MODEL=gpt-3.5-turbo
|
||
|
EMBEDDING_BINDING=openai
|
||
|
EMBEDDING_MODEL=text-embedding-ada-002
|
||
|
OPENAI_API_KEY=your-api-key
|
||
|
```
|
||
|
|
||
|
### API Usage
|
||
|
|
||
|
Once deployed, you can interact with the API at `http://localhost:9621`
|
||
|
|
||
|
Example query using PowerShell:
|
||
|
```powershell
|
||
|
$headers = @{
|
||
|
"X-API-Key" = "your-api-key"
|
||
|
"Content-Type" = "application/json"
|
||
|
}
|
||
|
$body = @{
|
||
|
query = "your question here"
|
||
|
} | ConvertTo-Json
|
||
|
|
||
|
Invoke-RestMethod -Uri "http://localhost:9621/query" -Method Post -Headers $headers -Body $body
|
||
|
```
|
||
|
|
||
|
Example query using curl:
|
||
|
```bash
|
||
|
curl -X POST "http://localhost:9621/query" \
|
||
|
-H "X-API-Key: your-api-key" \
|
||
|
-H "Content-Type: application/json" \
|
||
|
-d '{"query": "your question here"}'
|
||
|
```
|
||
|
|
||
|
## 🔒 Security
|
||
|
|
||
|
Remember to:
|
||
|
1. Set a strong API key in production
|
||
|
2. Use SSL in production environments
|
||
|
3. Configure proper network security
|
||
|
|
||
|
## 📦 Updates
|
||
|
|
||
|
To update the Docker container:
|
||
|
```bash
|
||
|
docker-compose pull
|
||
|
docker-compose up -d --build
|
||
|
```
|
||
|
|
||
|
To update native installation:
|
||
|
```bash
|
||
|
# Linux/MacOS
|
||
|
git pull
|
||
|
source venv/bin/activate
|
||
|
pip install -r requirements.txt
|
||
|
```
|
||
|
```powershell
|
||
|
# Windows PowerShell
|
||
|
git pull
|
||
|
.\venv\Scripts\Activate
|
||
|
pip install -r requirements.txt
|
||
|
```
|