2024-11-11 16:37:24 +08:00
|
|
|
|
|
|
|
from fastapi import FastAPI, HTTPException, File, UploadFile
|
|
|
|
from contextlib import asynccontextmanager
|
|
|
|
from pydantic import BaseModel
|
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
import sys, os
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import asyncio
|
|
|
|
import nest_asyncio
|
|
|
|
from lightrag import LightRAG, QueryParam
|
|
|
|
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
|
|
|
from lightrag.utils import EmbeddingFunc
|
|
|
|
import numpy as np
|
|
|
|
from datetime import datetime
|
|
|
|
|
|
|
|
from lightrag.kg.oracle_impl import OracleDB
|
|
|
|
|
|
|
|
|
2024-11-12 11:19:34 +08:00
|
|
|
print(os.getcwd())
|
|
|
|
|
|
|
|
script_directory = Path(__file__).resolve().parent.parent
|
|
|
|
sys.path.append(os.path.abspath(script_directory))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2024-11-11 16:37:24 +08:00
|
|
|
# Apply nest_asyncio to solve event loop issues
|
|
|
|
nest_asyncio.apply()
|
|
|
|
|
|
|
|
DEFAULT_RAG_DIR = "index_default"
|
|
|
|
|
|
|
|
|
|
|
|
# We use OpenAI compatible API to call LLM on Oracle Cloud
|
|
|
|
# More docs here https://github.com/jin38324/OCI_GenAI_access_gateway
|
|
|
|
BASE_URL = "http://xxx.xxx.xxx.xxx:8088/v1/"
|
|
|
|
APIKEY = "ocigenerativeai"
|
|
|
|
|
|
|
|
# Configure working directory
|
|
|
|
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
|
|
|
print(f"WORKING_DIR: {WORKING_DIR}")
|
|
|
|
LLM_MODEL = os.environ.get("LLM_MODEL", "cohere.command-r-plus")
|
|
|
|
print(f"LLM_MODEL: {LLM_MODEL}")
|
|
|
|
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "cohere.embed-multilingual-v3.0")
|
|
|
|
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
|
|
|
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 512))
|
|
|
|
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
|
|
|
|
|
|
|
|
|
|
|
if not os.path.exists(WORKING_DIR):
|
|
|
|
os.mkdir(WORKING_DIR)
|
|
|
|
|
|
|
|
async def llm_model_func(
|
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
) -> str:
|
|
|
|
return await openai_complete_if_cache(
|
|
|
|
LLM_MODEL,
|
|
|
|
prompt,
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
history_messages=history_messages,
|
|
|
|
api_key=APIKEY,
|
|
|
|
base_url=BASE_URL,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
|
|
|
return await openai_embedding(
|
|
|
|
texts,
|
|
|
|
model=EMBEDDING_MODEL,
|
|
|
|
api_key=APIKEY,
|
|
|
|
base_url=BASE_URL,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
async def get_embedding_dim():
|
|
|
|
test_text = ["This is a test sentence."]
|
|
|
|
embedding = await embedding_func(test_text)
|
|
|
|
embedding_dim = embedding.shape[1]
|
|
|
|
return embedding_dim
|
|
|
|
|
|
|
|
async def init():
|
|
|
|
|
|
|
|
# Detect embedding dimension
|
|
|
|
embedding_dimension = await get_embedding_dim()
|
|
|
|
print(f"Detected embedding dimension: {embedding_dimension}")
|
|
|
|
# Create Oracle DB connection
|
|
|
|
# The `config` parameter is the connection configuration of Oracle DB
|
|
|
|
# More docs here https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html
|
|
|
|
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
|
|
|
|
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
|
|
|
|
|
|
|
|
|
|
|
|
oracle_db = OracleDB(config={
|
|
|
|
"user":"",
|
|
|
|
"password":"",
|
|
|
|
"dsn":"",
|
|
|
|
"config_dir":"",
|
|
|
|
"wallet_location":"",
|
|
|
|
"wallet_password":"",
|
|
|
|
"workspace":""
|
|
|
|
} # specify which docs you want to store and query
|
|
|
|
)
|
|
|
|
|
|
|
|
# Check if Oracle DB tables exist, if not, tables will be created
|
|
|
|
await oracle_db.check_tables()
|
|
|
|
# Initialize LightRAG
|
|
|
|
# We use Oracle DB as the KV/vector/graph storage
|
|
|
|
rag = LightRAG(
|
|
|
|
enable_llm_cache=False,
|
|
|
|
working_dir=WORKING_DIR,
|
|
|
|
chunk_token_size=512,
|
|
|
|
llm_model_func=llm_model_func,
|
|
|
|
embedding_func=EmbeddingFunc(
|
|
|
|
embedding_dim=embedding_dimension,
|
|
|
|
max_token_size=512,
|
|
|
|
func=embedding_func,
|
|
|
|
),
|
|
|
|
graph_storage = "OracleGraphStorage",
|
|
|
|
kv_storage="OracleKVStorage",
|
|
|
|
vector_storage="OracleVectorDBStorage"
|
|
|
|
)
|
|
|
|
|
|
|
|
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
|
|
|
rag.graph_storage_cls.db = oracle_db
|
|
|
|
rag.key_string_value_json_storage_cls.db = oracle_db
|
|
|
|
rag.vector_db_storage_cls.db = oracle_db
|
|
|
|
|
|
|
|
return rag
|
|
|
|
|
|
|
|
# Data models
|
|
|
|
|
|
|
|
|
|
|
|
class QueryRequest(BaseModel):
|
|
|
|
query: str
|
|
|
|
mode: str = "hybrid"
|
|
|
|
only_need_context: bool = False
|
|
|
|
|
|
|
|
|
|
|
|
class InsertRequest(BaseModel):
|
|
|
|
text: str
|
|
|
|
|
|
|
|
|
|
|
|
class Response(BaseModel):
|
|
|
|
status: str
|
|
|
|
data: Optional[str] = None
|
|
|
|
message: Optional[str] = None
|
|
|
|
|
|
|
|
|
|
|
|
# API routes
|
|
|
|
|
|
|
|
rag = None # 定义为全局对象
|
|
|
|
|
|
|
|
@asynccontextmanager
|
|
|
|
async def lifespan(app: FastAPI):
|
|
|
|
global rag
|
|
|
|
rag = await init() # 在应用启动时初始化 `rag`
|
|
|
|
print("done!")
|
|
|
|
yield
|
|
|
|
|
|
|
|
|
|
|
|
app = FastAPI(title="LightRAG API", description="API for RAG operations",lifespan=lifespan)
|
|
|
|
|
|
|
|
@app.post("/query", response_model=Response)
|
|
|
|
async def query_endpoint(request: QueryRequest):
|
|
|
|
try:
|
|
|
|
# loop = asyncio.get_event_loop()
|
|
|
|
result = await rag.aquery(
|
|
|
|
request.query,
|
|
|
|
param=QueryParam(
|
|
|
|
mode=request.mode, only_need_context=request.only_need_context
|
|
|
|
),
|
|
|
|
)
|
|
|
|
return Response(status="success", data=result)
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
@app.post("/insert", response_model=Response)
|
|
|
|
async def insert_endpoint(request: InsertRequest):
|
|
|
|
try:
|
|
|
|
loop = asyncio.get_event_loop()
|
|
|
|
await loop.run_in_executor(None, lambda: rag.insert(request.text))
|
|
|
|
return Response(status="success", message="Text inserted successfully")
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
@app.post("/insert_file", response_model=Response)
|
|
|
|
async def insert_file(file: UploadFile = File(...)):
|
|
|
|
try:
|
|
|
|
file_content = await file.read()
|
|
|
|
# Read file content
|
|
|
|
try:
|
|
|
|
content = file_content.decode("utf-8")
|
|
|
|
except UnicodeDecodeError:
|
|
|
|
# If UTF-8 decoding fails, try other encodings
|
|
|
|
content = file_content.decode("gbk")
|
|
|
|
# Insert file content
|
|
|
|
loop = asyncio.get_event_loop()
|
|
|
|
await loop.run_in_executor(None, lambda: rag.insert(content))
|
|
|
|
|
|
|
|
return Response(
|
|
|
|
status="success",
|
|
|
|
message=f"File content from {file.filename} inserted successfully",
|
|
|
|
)
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
@app.get("/health")
|
|
|
|
async def health_check():
|
|
|
|
return {"status": "healthy"}
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
import uvicorn
|
|
|
|
|
|
|
|
uvicorn.run(app, host="0.0.0.0", port=8020)
|
|
|
|
|
|
|
|
# Usage example
|
|
|
|
# To run the server, use the following command in your terminal:
|
|
|
|
# python lightrag_api_openai_compatible_demo.py
|
|
|
|
|
|
|
|
# Example requests:
|
|
|
|
# 1. Query:
|
|
|
|
# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'
|
|
|
|
|
|
|
|
# 2. Insert text:
|
|
|
|
# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'
|
|
|
|
|
|
|
|
# 3. Insert file:
|
|
|
|
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}'
|
|
|
|
|
|
|
|
# 4. Health check:
|
|
|
|
# curl -X GET "http://127.0.0.1:8020/health"
|