LightRAG/examples/vram_management_demo.py

82 lines
2.6 KiB
Python
Raw Normal View History

2024-10-20 11:27:47 +08:00
import os
import time
from lightrag import LightRAG, QueryParam
from lightrag.llm import ollama_model_complete, ollama_embedding
from lightrag.utils import EmbeddingFunc
# 工作目录和文本文件目录路径
WORKING_DIR = "./dickens"
TEXT_FILES_DIR = "/llm/mt"
# 如果工作目录不存在,则创建该目录
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
# 初始化 LightRAG
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete,
llm_model_name="qwen2.5:3b-instruct-max-context",
embedding_func=EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=lambda texts: ollama_embedding(texts, embed_model="nomic-embed-text"),
),
)
# 读取 TEXT_FILES_DIR 目录下所有的 .txt 文件
texts = []
for filename in os.listdir(TEXT_FILES_DIR):
if filename.endswith('.txt'):
file_path = os.path.join(TEXT_FILES_DIR, filename)
with open(file_path, 'r', encoding='utf-8') as file:
texts.append(file.read())
# 批量插入文本到 LightRAG带有重试机制
def insert_texts_with_retry(rag, texts, retries=3, delay=5):
for _ in range(retries):
try:
rag.insert(texts)
return
except Exception as e:
print(f"Error occurred during insertion: {e}. Retrying in {delay} seconds...")
time.sleep(delay)
raise RuntimeError("Failed to insert texts after multiple retries.")
insert_texts_with_retry(rag, texts)
# 执行不同类型的查询,并处理潜在的错误
try:
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
except Exception as e:
print(f"Error performing naive search: {e}")
try:
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
except Exception as e:
print(f"Error performing local search: {e}")
try:
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
except Exception as e:
print(f"Error performing global search: {e}")
try:
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
except Exception as e:
print(f"Error performing hybrid search: {e}")
# 清理 VRAM 资源的函数
def clear_vram():
os.system("sudo nvidia-smi --gpu-reset")
# 定期清理 VRAM 以防止溢出
clear_vram_interval = 3600 # 每小时清理一次
start_time = time.time()
while True:
current_time = time.time()
if current_time - start_time > clear_vram_interval:
clear_vram()
start_time = current_time
time.sleep(60) # 每分钟检查一次时间