mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-06-26 22:00:19 +00:00
189 lines
5.4 KiB
Python
189 lines
5.4 KiB
Python
![]() |
"""
|
||
|
Azure OpenAI LLM Interface Module
|
||
|
==========================
|
||
|
|
||
|
This module provides interfaces for interacting with aure openai's language models,
|
||
|
including text generation and embedding capabilities.
|
||
|
|
||
|
Author: Lightrag team
|
||
|
Created: 2024-01-24
|
||
|
License: MIT License
|
||
|
|
||
|
Copyright (c) 2024 Lightrag
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
of this software and associated documentation files (the "Software"), to deal
|
||
|
in the Software without restriction, including without limitation the rights
|
||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
copies of the Software, and to permit persons to whom the Software is
|
||
|
furnished to do so, subject to the following conditions:
|
||
|
|
||
|
Version: 1.0.0
|
||
|
|
||
|
Change Log:
|
||
|
- 1.0.0 (2024-01-24): Initial release
|
||
|
* Added async chat completion support
|
||
|
* Added embedding generation
|
||
|
* Added stream response capability
|
||
|
|
||
|
Dependencies:
|
||
|
- openai
|
||
|
- numpy
|
||
|
- pipmaster
|
||
|
- Python >= 3.10
|
||
|
|
||
|
Usage:
|
||
|
from llm_interfaces.azure_openai import azure_openai_model_complete, azure_openai_embed
|
||
|
"""
|
||
|
|
||
|
__version__ = "1.0.0"
|
||
|
__author__ = "lightrag Team"
|
||
|
__status__ = "Production"
|
||
|
|
||
|
|
||
|
import os
|
||
|
import pipmaster as pm # Pipmaster for dynamic library install
|
||
|
|
||
|
# install specific modules
|
||
|
if not pm.is_installed("openai"):
|
||
|
pm.install("openai")
|
||
|
if not pm.is_installed("tenacity"):
|
||
|
pm.install("tenacity")
|
||
|
|
||
|
from openai import (
|
||
|
AsyncAzureOpenAI,
|
||
|
APIConnectionError,
|
||
|
RateLimitError,
|
||
|
APITimeoutError,
|
||
|
)
|
||
|
from tenacity import (
|
||
|
retry,
|
||
|
stop_after_attempt,
|
||
|
wait_exponential,
|
||
|
retry_if_exception_type,
|
||
|
)
|
||
|
|
||
|
from lightrag.utils import (
|
||
|
wrap_embedding_func_with_attrs,
|
||
|
locate_json_string_body_from_string,
|
||
|
safe_unicode_decode,
|
||
|
)
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
@retry(
|
||
|
stop=stop_after_attempt(3),
|
||
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||
|
retry=retry_if_exception_type(
|
||
|
(RateLimitError, APIConnectionError, APIConnectionError)
|
||
|
),
|
||
|
)
|
||
|
async def azure_openai_complete_if_cache(
|
||
|
model,
|
||
|
prompt,
|
||
|
system_prompt=None,
|
||
|
history_messages=[],
|
||
|
base_url=None,
|
||
|
api_key=None,
|
||
|
api_version=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
if api_key:
|
||
|
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
||
|
if base_url:
|
||
|
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
||
|
if api_version:
|
||
|
os.environ["AZURE_OPENAI_API_VERSION"] = api_version
|
||
|
|
||
|
openai_async_client = AsyncAzureOpenAI(
|
||
|
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
||
|
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
||
|
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
||
|
)
|
||
|
kwargs.pop("hashing_kv", None)
|
||
|
messages = []
|
||
|
if system_prompt:
|
||
|
messages.append({"role": "system", "content": system_prompt})
|
||
|
messages.extend(history_messages)
|
||
|
if prompt is not None:
|
||
|
messages.append({"role": "user", "content": prompt})
|
||
|
|
||
|
if "response_format" in kwargs:
|
||
|
response = await openai_async_client.beta.chat.completions.parse(
|
||
|
model=model, messages=messages, **kwargs
|
||
|
)
|
||
|
else:
|
||
|
response = await openai_async_client.chat.completions.create(
|
||
|
model=model, messages=messages, **kwargs
|
||
|
)
|
||
|
|
||
|
if hasattr(response, "__aiter__"):
|
||
|
|
||
|
async def inner():
|
||
|
async for chunk in response:
|
||
|
if len(chunk.choices) == 0:
|
||
|
continue
|
||
|
content = chunk.choices[0].delta.content
|
||
|
if content is None:
|
||
|
continue
|
||
|
if r"\u" in content:
|
||
|
content = safe_unicode_decode(content.encode("utf-8"))
|
||
|
yield content
|
||
|
|
||
|
return inner()
|
||
|
else:
|
||
|
content = response.choices[0].message.content
|
||
|
if r"\u" in content:
|
||
|
content = safe_unicode_decode(content.encode("utf-8"))
|
||
|
return content
|
||
|
|
||
|
|
||
|
async def azure_openai_complete(
|
||
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||
|
) -> str:
|
||
|
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||
|
result = await azure_openai_complete_if_cache(
|
||
|
os.getenv("LLM_MODEL", "gpt-4o-mini"),
|
||
|
prompt,
|
||
|
system_prompt=system_prompt,
|
||
|
history_messages=history_messages,
|
||
|
**kwargs,
|
||
|
)
|
||
|
if keyword_extraction: # TODO: use JSON API
|
||
|
return locate_json_string_body_from_string(result)
|
||
|
return result
|
||
|
|
||
|
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8191)
|
||
|
@retry(
|
||
|
stop=stop_after_attempt(3),
|
||
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||
|
retry=retry_if_exception_type(
|
||
|
(RateLimitError, APIConnectionError, APITimeoutError)
|
||
|
),
|
||
|
)
|
||
|
async def azure_openai_embed(
|
||
|
texts: list[str],
|
||
|
model: str = "text-embedding-3-small",
|
||
|
base_url: str = None,
|
||
|
api_key: str = None,
|
||
|
api_version: str = None,
|
||
|
) -> np.ndarray:
|
||
|
if api_key:
|
||
|
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
||
|
if base_url:
|
||
|
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
||
|
if api_version:
|
||
|
os.environ["AZURE_OPENAI_API_VERSION"] = api_version
|
||
|
|
||
|
openai_async_client = AsyncAzureOpenAI(
|
||
|
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
||
|
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
||
|
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
||
|
)
|
||
|
|
||
|
response = await openai_async_client.embeddings.create(
|
||
|
model=model, input=texts, encoding_format="float"
|
||
|
)
|
||
|
return np.array([dp.embedding for dp in response.data])
|
||
|
|