mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-04 15:41:03 +00:00
230 lines
6.9 KiB
Python
230 lines
6.9 KiB
Python
![]() |
"""
|
||
|
Bedrock LLM Interface Module
|
||
|
==========================
|
||
|
|
||
|
This module provides interfaces for interacting with Bedrock's language models,
|
||
|
including text generation and embedding capabilities.
|
||
|
|
||
|
Author: Lightrag team
|
||
|
Created: 2024-01-24
|
||
|
License: MIT License
|
||
|
|
||
|
Copyright (c) 2024 Lightrag
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
of this software and associated documentation files (the "Software"), to deal
|
||
|
in the Software without restriction, including without limitation the rights
|
||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
copies of the Software, and to permit persons to whom the Software is
|
||
|
furnished to do so, subject to the following conditions:
|
||
|
|
||
|
Version: 1.0.0
|
||
|
|
||
|
Change Log:
|
||
|
- 1.0.0 (2024-01-24): Initial release
|
||
|
* Added async chat completion support
|
||
|
* Added embedding generation
|
||
|
* Added stream response capability
|
||
|
|
||
|
Dependencies:
|
||
|
- aioboto3, tenacity
|
||
|
- numpy
|
||
|
- pipmaster
|
||
|
- Python >= 3.10
|
||
|
|
||
|
Usage:
|
||
|
from llm_interfaces.bebrock import bebrock_model_complete, bebrock_embed
|
||
|
"""
|
||
|
|
||
|
__version__ = "1.0.0"
|
||
|
__author__ = "lightrag Team"
|
||
|
__status__ = "Production"
|
||
|
|
||
|
|
||
|
import sys
|
||
|
import copy
|
||
|
import os
|
||
|
import json
|
||
|
|
||
|
import pipmaster as pm # Pipmaster for dynamic library install
|
||
|
if not pm.is_installed("aioboto3"):
|
||
|
pm.install("aioboto3")
|
||
|
if not pm.is_installed("tenacity"):
|
||
|
pm.install("tenacity")
|
||
|
import aioboto3
|
||
|
import numpy as np
|
||
|
from tenacity import (
|
||
|
retry,
|
||
|
stop_after_attempt,
|
||
|
wait_exponential,
|
||
|
retry_if_exception_type,
|
||
|
)
|
||
|
|
||
|
from lightrag.exceptions import (
|
||
|
APIConnectionError,
|
||
|
RateLimitError,
|
||
|
APITimeoutError,
|
||
|
)
|
||
|
from lightrag.utils import (
|
||
|
locate_json_string_body_from_string,
|
||
|
)
|
||
|
|
||
|
class BedrockError(Exception):
|
||
|
"""Generic error for issues related to Amazon Bedrock"""
|
||
|
|
||
|
|
||
|
@retry(
|
||
|
stop=stop_after_attempt(5),
|
||
|
wait=wait_exponential(multiplier=1, max=60),
|
||
|
retry=retry_if_exception_type((BedrockError)),
|
||
|
)
|
||
|
async def bedrock_complete_if_cache(
|
||
|
model,
|
||
|
prompt,
|
||
|
system_prompt=None,
|
||
|
history_messages=[],
|
||
|
aws_access_key_id=None,
|
||
|
aws_secret_access_key=None,
|
||
|
aws_session_token=None,
|
||
|
**kwargs,
|
||
|
) -> str:
|
||
|
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
|
||
|
"AWS_ACCESS_KEY_ID", aws_access_key_id
|
||
|
)
|
||
|
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
|
||
|
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
|
||
|
)
|
||
|
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
||
|
"AWS_SESSION_TOKEN", aws_session_token
|
||
|
)
|
||
|
kwargs.pop("hashing_kv", None)
|
||
|
# Fix message history format
|
||
|
messages = []
|
||
|
for history_message in history_messages:
|
||
|
message = copy.copy(history_message)
|
||
|
message["content"] = [{"text": message["content"]}]
|
||
|
messages.append(message)
|
||
|
|
||
|
# Add user prompt
|
||
|
messages.append({"role": "user", "content": [{"text": prompt}]})
|
||
|
|
||
|
# Initialize Converse API arguments
|
||
|
args = {"modelId": model, "messages": messages}
|
||
|
|
||
|
# Define system prompt
|
||
|
if system_prompt:
|
||
|
args["system"] = [{"text": system_prompt}]
|
||
|
|
||
|
# Map and set up inference parameters
|
||
|
inference_params_map = {
|
||
|
"max_tokens": "maxTokens",
|
||
|
"top_p": "topP",
|
||
|
"stop_sequences": "stopSequences",
|
||
|
}
|
||
|
if inference_params := list(
|
||
|
set(kwargs) & set(["max_tokens", "temperature", "top_p", "stop_sequences"])
|
||
|
):
|
||
|
args["inferenceConfig"] = {}
|
||
|
for param in inference_params:
|
||
|
args["inferenceConfig"][inference_params_map.get(param, param)] = (
|
||
|
kwargs.pop(param)
|
||
|
)
|
||
|
|
||
|
# Call model via Converse API
|
||
|
session = aioboto3.Session()
|
||
|
async with session.client("bedrock-runtime") as bedrock_async_client:
|
||
|
try:
|
||
|
response = await bedrock_async_client.converse(**args, **kwargs)
|
||
|
except Exception as e:
|
||
|
raise BedrockError(e)
|
||
|
|
||
|
return response["output"]["message"]["content"][0]["text"]
|
||
|
|
||
|
|
||
|
async def bedrock_complete(
|
||
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||
|
) -> str:
|
||
|
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||
|
result = await bedrock_complete_if_cache(
|
||
|
"anthropic.claude-3-haiku-20240307-v1:0",
|
||
|
prompt,
|
||
|
system_prompt=system_prompt,
|
||
|
history_messages=history_messages,
|
||
|
**kwargs,
|
||
|
)
|
||
|
if keyword_extraction: # TODO: use JSON API
|
||
|
return locate_json_string_body_from_string(result)
|
||
|
return result
|
||
|
|
||
|
|
||
|
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
||
|
# @retry(
|
||
|
# stop=stop_after_attempt(3),
|
||
|
# wait=wait_exponential(multiplier=1, min=4, max=10),
|
||
|
# retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions
|
||
|
# )
|
||
|
async def bedrock_embed(
|
||
|
texts: list[str],
|
||
|
model: str = "amazon.titan-embed-text-v2:0",
|
||
|
aws_access_key_id=None,
|
||
|
aws_secret_access_key=None,
|
||
|
aws_session_token=None,
|
||
|
) -> np.ndarray:
|
||
|
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
|
||
|
"AWS_ACCESS_KEY_ID", aws_access_key_id
|
||
|
)
|
||
|
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
|
||
|
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
|
||
|
)
|
||
|
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
||
|
"AWS_SESSION_TOKEN", aws_session_token
|
||
|
)
|
||
|
|
||
|
session = aioboto3.Session()
|
||
|
async with session.client("bedrock-runtime") as bedrock_async_client:
|
||
|
if (model_provider := model.split(".")[0]) == "amazon":
|
||
|
embed_texts = []
|
||
|
for text in texts:
|
||
|
if "v2" in model:
|
||
|
body = json.dumps(
|
||
|
{
|
||
|
"inputText": text,
|
||
|
# 'dimensions': embedding_dim,
|
||
|
"embeddingTypes": ["float"],
|
||
|
}
|
||
|
)
|
||
|
elif "v1" in model:
|
||
|
body = json.dumps({"inputText": text})
|
||
|
else:
|
||
|
raise ValueError(f"Model {model} is not supported!")
|
||
|
|
||
|
response = await bedrock_async_client.invoke_model(
|
||
|
modelId=model,
|
||
|
body=body,
|
||
|
accept="application/json",
|
||
|
contentType="application/json",
|
||
|
)
|
||
|
|
||
|
response_body = await response.get("body").json()
|
||
|
|
||
|
embed_texts.append(response_body["embedding"])
|
||
|
elif model_provider == "cohere":
|
||
|
body = json.dumps(
|
||
|
{"texts": texts, "input_type": "search_document", "truncate": "NONE"}
|
||
|
)
|
||
|
|
||
|
response = await bedrock_async_client.invoke_model(
|
||
|
model=model,
|
||
|
body=body,
|
||
|
accept="application/json",
|
||
|
contentType="application/json",
|
||
|
)
|
||
|
|
||
|
response_body = json.loads(response.get("body").read())
|
||
|
|
||
|
embed_texts = response_body["embeddings"]
|
||
|
else:
|
||
|
raise ValueError(f"Model provider '{model_provider}' is not supported!")
|
||
|
|
||
|
return np.array(embed_texts)
|