mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-04 15:41:03 +00:00
188 lines
5.6 KiB
Python
188 lines
5.6 KiB
Python
![]() |
"""
|
||
|
Hugging face LLM Interface Module
|
||
|
==========================
|
||
|
|
||
|
This module provides interfaces for interacting with Hugging face's language models,
|
||
|
including text generation and embedding capabilities.
|
||
|
|
||
|
Author: Lightrag team
|
||
|
Created: 2024-01-24
|
||
|
License: MIT License
|
||
|
|
||
|
Copyright (c) 2024 Lightrag
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
of this software and associated documentation files (the "Software"), to deal
|
||
|
in the Software without restriction, including without limitation the rights
|
||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
copies of the Software, and to permit persons to whom the Software is
|
||
|
furnished to do so, subject to the following conditions:
|
||
|
|
||
|
Version: 1.0.0
|
||
|
|
||
|
Change Log:
|
||
|
- 1.0.0 (2024-01-24): Initial release
|
||
|
* Added async chat completion support
|
||
|
* Added embedding generation
|
||
|
* Added stream response capability
|
||
|
|
||
|
Dependencies:
|
||
|
- transformers
|
||
|
- numpy
|
||
|
- pipmaster
|
||
|
- Python >= 3.10
|
||
|
|
||
|
Usage:
|
||
|
from llm_interfaces.hf import hf_model_complete, hf_embed
|
||
|
"""
|
||
|
|
||
|
__version__ = "1.0.0"
|
||
|
__author__ = "lightrag Team"
|
||
|
__status__ = "Production"
|
||
|
|
||
|
import copy
|
||
|
import os
|
||
|
import pipmaster as pm # Pipmaster for dynamic library install
|
||
|
|
||
|
# install specific modules
|
||
|
if not pm.is_installed("transformers"):
|
||
|
pm.install("transformers")
|
||
|
if not pm.is_installed("torch"):
|
||
|
pm.install("torch")
|
||
|
if not pm.is_installed("tenacity"):
|
||
|
pm.install("tenacity")
|
||
|
|
||
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||
|
from functools import lru_cache
|
||
|
from tenacity import (
|
||
|
retry,
|
||
|
stop_after_attempt,
|
||
|
wait_exponential,
|
||
|
retry_if_exception_type,
|
||
|
)
|
||
|
from lightrag.exceptions import (
|
||
|
APIConnectionError,
|
||
|
RateLimitError,
|
||
|
APITimeoutError,
|
||
|
)
|
||
|
from lightrag.utils import (
|
||
|
locate_json_string_body_from_string,
|
||
|
)
|
||
|
import torch
|
||
|
|
||
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||
|
|
||
|
@lru_cache(maxsize=1)
|
||
|
def initialize_hf_model(model_name):
|
||
|
hf_tokenizer = AutoTokenizer.from_pretrained(
|
||
|
model_name, device_map="auto", trust_remote_code=True
|
||
|
)
|
||
|
hf_model = AutoModelForCausalLM.from_pretrained(
|
||
|
model_name, device_map="auto", trust_remote_code=True
|
||
|
)
|
||
|
if hf_tokenizer.pad_token is None:
|
||
|
hf_tokenizer.pad_token = hf_tokenizer.eos_token
|
||
|
|
||
|
return hf_model, hf_tokenizer
|
||
|
|
||
|
|
||
|
@retry(
|
||
|
stop=stop_after_attempt(3),
|
||
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||
|
retry=retry_if_exception_type(
|
||
|
(RateLimitError, APIConnectionError, APITimeoutError)
|
||
|
),
|
||
|
)
|
||
|
async def hf_model_if_cache(
|
||
|
model,
|
||
|
prompt,
|
||
|
system_prompt=None,
|
||
|
history_messages=[],
|
||
|
**kwargs,
|
||
|
) -> str:
|
||
|
model_name = model
|
||
|
hf_model, hf_tokenizer = initialize_hf_model(model_name)
|
||
|
messages = []
|
||
|
if system_prompt:
|
||
|
messages.append({"role": "system", "content": system_prompt})
|
||
|
messages.extend(history_messages)
|
||
|
messages.append({"role": "user", "content": prompt})
|
||
|
kwargs.pop("hashing_kv", None)
|
||
|
input_prompt = ""
|
||
|
try:
|
||
|
input_prompt = hf_tokenizer.apply_chat_template(
|
||
|
messages, tokenize=False, add_generation_prompt=True
|
||
|
)
|
||
|
except Exception:
|
||
|
try:
|
||
|
ori_message = copy.deepcopy(messages)
|
||
|
if messages[0]["role"] == "system":
|
||
|
messages[1]["content"] = (
|
||
|
"<system>"
|
||
|
+ messages[0]["content"]
|
||
|
+ "</system>\n"
|
||
|
+ messages[1]["content"]
|
||
|
)
|
||
|
messages = messages[1:]
|
||
|
input_prompt = hf_tokenizer.apply_chat_template(
|
||
|
messages, tokenize=False, add_generation_prompt=True
|
||
|
)
|
||
|
except Exception:
|
||
|
len_message = len(ori_message)
|
||
|
for msgid in range(len_message):
|
||
|
input_prompt = (
|
||
|
input_prompt
|
||
|
+ "<"
|
||
|
+ ori_message[msgid]["role"]
|
||
|
+ ">"
|
||
|
+ ori_message[msgid]["content"]
|
||
|
+ "</"
|
||
|
+ ori_message[msgid]["role"]
|
||
|
+ ">\n"
|
||
|
)
|
||
|
|
||
|
input_ids = hf_tokenizer(
|
||
|
input_prompt, return_tensors="pt", padding=True, truncation=True
|
||
|
).to("cuda")
|
||
|
inputs = {k: v.to(hf_model.device) for k, v in input_ids.items()}
|
||
|
output = hf_model.generate(
|
||
|
**input_ids, max_new_tokens=512, num_return_sequences=1, early_stopping=True
|
||
|
)
|
||
|
response_text = hf_tokenizer.decode(
|
||
|
output[0][len(inputs["input_ids"][0]) :], skip_special_tokens=True
|
||
|
)
|
||
|
|
||
|
return response_text
|
||
|
|
||
|
|
||
|
|
||
|
async def hf_model_complete(
|
||
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||
|
) -> str:
|
||
|
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||
|
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
||
|
result = await hf_model_if_cache(
|
||
|
model_name,
|
||
|
prompt,
|
||
|
system_prompt=system_prompt,
|
||
|
history_messages=history_messages,
|
||
|
**kwargs,
|
||
|
)
|
||
|
if keyword_extraction: # TODO: use JSON API
|
||
|
return locate_json_string_body_from_string(result)
|
||
|
return result
|
||
|
|
||
|
|
||
|
async def hf_embed(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
||
|
device = next(embed_model.parameters()).device
|
||
|
input_ids = tokenizer(
|
||
|
texts, return_tensors="pt", padding=True, truncation=True
|
||
|
).input_ids.to(device)
|
||
|
with torch.no_grad():
|
||
|
outputs = embed_model(input_ids)
|
||
|
embeddings = outputs.last_hidden_state.mean(dim=1)
|
||
|
if embeddings.dtype == torch.bfloat16:
|
||
|
return embeddings.detach().to(torch.float32).cpu().numpy()
|
||
|
else:
|
||
|
return embeddings.detach().cpu().numpy()
|