mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-08 09:31:34 +00:00
105 lines
2.7 KiB
Python
105 lines
2.7 KiB
Python
![]() |
"""
|
||
|
Jina Embedding Interface Module
|
||
|
==========================
|
||
|
|
||
|
This module provides interfaces for interacting with jina system,
|
||
|
including embedding capabilities.
|
||
|
|
||
|
Author: Lightrag team
|
||
|
Created: 2024-01-24
|
||
|
License: MIT License
|
||
|
|
||
|
Copyright (c) 2024 Lightrag
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
of this software and associated documentation files (the "Software"), to deal
|
||
|
in the Software without restriction, including without limitation the rights
|
||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
copies of the Software, and to permit persons to whom the Software is
|
||
|
furnished to do so, subject to the following conditions:
|
||
|
|
||
|
Version: 1.0.0
|
||
|
|
||
|
Change Log:
|
||
|
- 1.0.0 (2024-01-24): Initial release
|
||
|
* Added embedding generation
|
||
|
|
||
|
Dependencies:
|
||
|
- tenacity
|
||
|
- numpy
|
||
|
- pipmaster
|
||
|
- Python >= 3.10
|
||
|
|
||
|
Usage:
|
||
|
from llm_interfaces.jina import jina_embed
|
||
|
"""
|
||
|
|
||
|
__version__ = "1.0.0"
|
||
|
__author__ = "lightrag Team"
|
||
|
__status__ = "Production"
|
||
|
|
||
|
import os
|
||
|
import pipmaster as pm # Pipmaster for dynamic library install
|
||
|
|
||
|
# install specific modules
|
||
|
if not pm.is_installed("lmdeploy"):
|
||
|
pm.install("lmdeploy")
|
||
|
if not pm.is_installed("tenacity"):
|
||
|
pm.install("tenacity")
|
||
|
|
||
|
from tenacity import (
|
||
|
retry,
|
||
|
stop_after_attempt,
|
||
|
wait_exponential,
|
||
|
retry_if_exception_type,
|
||
|
)
|
||
|
|
||
|
from lightrag.utils import (
|
||
|
wrap_embedding_func_with_attrs,
|
||
|
locate_json_string_body_from_string,
|
||
|
safe_unicode_decode,
|
||
|
logger,
|
||
|
)
|
||
|
|
||
|
from lightrag.types import GPTKeywordExtractionFormat
|
||
|
from functools import lru_cache
|
||
|
|
||
|
import numpy as np
|
||
|
from typing import Union
|
||
|
import aiohttp
|
||
|
|
||
|
|
||
|
async def fetch_data(url, headers, data):
|
||
|
async with aiohttp.ClientSession() as session:
|
||
|
async with session.post(url, headers=headers, json=data) as response:
|
||
|
response_json = await response.json()
|
||
|
data_list = response_json.get("data", [])
|
||
|
return data_list
|
||
|
|
||
|
|
||
|
async def jina_embed(
|
||
|
texts: list[str],
|
||
|
dimensions: int = 1024,
|
||
|
late_chunking: bool = False,
|
||
|
base_url: str = None,
|
||
|
api_key: str = None,
|
||
|
) -> np.ndarray:
|
||
|
if api_key:
|
||
|
os.environ["JINA_API_KEY"] = api_key
|
||
|
url = "https://api.jina.ai/v1/embeddings" if not base_url else base_url
|
||
|
headers = {
|
||
|
"Content-Type": "application/json",
|
||
|
"Authorization": f"Bearer {os.environ['JINA_API_KEY']}",
|
||
|
}
|
||
|
data = {
|
||
|
"model": "jina-embeddings-v3",
|
||
|
"normalized": True,
|
||
|
"embedding_type": "float",
|
||
|
"dimensions": f"{dimensions}",
|
||
|
"late_chunking": late_chunking,
|
||
|
"input": texts,
|
||
|
}
|
||
|
data_list = await fetch_data(url, headers, data)
|
||
|
return np.array([dp["embedding"] for dp in data_list])
|
||
|
|