mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-04 07:26:17 +00:00
155 lines
4.5 KiB
Python
155 lines
4.5 KiB
Python
![]() |
"""
|
||
|
Ollama LLM Interface Module
|
||
|
==========================
|
||
|
|
||
|
This module provides interfaces for interacting with Ollama's language models,
|
||
|
including text generation and embedding capabilities.
|
||
|
|
||
|
Author: Lightrag team
|
||
|
Created: 2024-01-24
|
||
|
License: MIT License
|
||
|
|
||
|
Copyright (c) 2024 Lightrag
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
of this software and associated documentation files (the "Software"), to deal
|
||
|
in the Software without restriction, including without limitation the rights
|
||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
copies of the Software, and to permit persons to whom the Software is
|
||
|
furnished to do so, subject to the following conditions:
|
||
|
|
||
|
Version: 1.0.0
|
||
|
|
||
|
Change Log:
|
||
|
- 1.0.0 (2024-01-24): Initial release
|
||
|
* Added async chat completion support
|
||
|
* Added embedding generation
|
||
|
* Added stream response capability
|
||
|
|
||
|
Dependencies:
|
||
|
- ollama
|
||
|
- numpy
|
||
|
- pipmaster
|
||
|
- Python >= 3.10
|
||
|
|
||
|
Usage:
|
||
|
from llm_interfaces.ollama_interface import ollama_model_complete, ollama_embed
|
||
|
"""
|
||
|
|
||
|
__version__ = "1.0.0"
|
||
|
__author__ = "lightrag Team"
|
||
|
__status__ = "Production"
|
||
|
|
||
|
import sys
|
||
|
if sys.version_info < (3, 9):
|
||
|
from typing import AsyncIterator
|
||
|
else:
|
||
|
from collections.abc import AsyncIterator
|
||
|
import pipmaster as pm # Pipmaster for dynamic library install
|
||
|
|
||
|
# install specific modules
|
||
|
if not pm.is_installed("ollama"):
|
||
|
pm.install("ollama")
|
||
|
if not pm.is_installed("tenacity"):
|
||
|
pm.install("tenacity")
|
||
|
|
||
|
import ollama
|
||
|
from tenacity import (
|
||
|
retry,
|
||
|
stop_after_attempt,
|
||
|
wait_exponential,
|
||
|
retry_if_exception_type,
|
||
|
)
|
||
|
from lightrag.exceptions import (
|
||
|
APIConnectionError,
|
||
|
RateLimitError,
|
||
|
APITimeoutError,
|
||
|
)
|
||
|
import numpy as np
|
||
|
from typing import Union
|
||
|
|
||
|
|
||
|
@retry(
|
||
|
stop=stop_after_attempt(3),
|
||
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||
|
retry=retry_if_exception_type(
|
||
|
(RateLimitError, APIConnectionError, APITimeoutError)
|
||
|
),
|
||
|
)
|
||
|
async def ollama_model_if_cache(
|
||
|
model,
|
||
|
prompt,
|
||
|
system_prompt=None,
|
||
|
history_messages=[],
|
||
|
**kwargs,
|
||
|
) -> Union[str, AsyncIterator[str]]:
|
||
|
stream = True if kwargs.get("stream") else False
|
||
|
kwargs.pop("max_tokens", None)
|
||
|
# kwargs.pop("response_format", None) # allow json
|
||
|
host = kwargs.pop("host", None)
|
||
|
timeout = kwargs.pop("timeout", None)
|
||
|
kwargs.pop("hashing_kv", None)
|
||
|
api_key = kwargs.pop("api_key", None)
|
||
|
headers = (
|
||
|
{"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
|
||
|
if api_key
|
||
|
else {"Content-Type": "application/json"}
|
||
|
)
|
||
|
ollama_client = ollama.AsyncClient(host=host, timeout=timeout, headers=headers)
|
||
|
messages = []
|
||
|
if system_prompt:
|
||
|
messages.append({"role": "system", "content": system_prompt})
|
||
|
messages.extend(history_messages)
|
||
|
messages.append({"role": "user", "content": prompt})
|
||
|
|
||
|
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
|
||
|
if stream:
|
||
|
"""cannot cache stream response"""
|
||
|
|
||
|
async def inner():
|
||
|
async for chunk in response:
|
||
|
yield chunk["message"]["content"]
|
||
|
|
||
|
return inner()
|
||
|
else:
|
||
|
return response["message"]["content"]
|
||
|
|
||
|
async def ollama_model_complete(
|
||
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||
|
) -> Union[str, AsyncIterator[str]]:
|
||
|
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||
|
if keyword_extraction:
|
||
|
kwargs["format"] = "json"
|
||
|
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
||
|
return await ollama_model_if_cache(
|
||
|
model_name,
|
||
|
prompt,
|
||
|
system_prompt=system_prompt,
|
||
|
history_messages=history_messages,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
async def ollama_embedding(texts: list[str], embed_model, **kwargs) -> np.ndarray:
|
||
|
"""
|
||
|
Deprecated in favor of `embed`.
|
||
|
"""
|
||
|
embed_text = []
|
||
|
ollama_client = ollama.Client(**kwargs)
|
||
|
for text in texts:
|
||
|
data = ollama_client.embeddings(model=embed_model, prompt=text)
|
||
|
embed_text.append(data["embedding"])
|
||
|
|
||
|
return embed_text
|
||
|
|
||
|
|
||
|
async def ollama_embed(texts: list[str], embed_model, **kwargs) -> np.ndarray:
|
||
|
api_key = kwargs.pop("api_key", None)
|
||
|
headers = (
|
||
|
{"Content-Type": "application/json", "Authorization": api_key}
|
||
|
if api_key
|
||
|
else {"Content-Type": "application/json"}
|
||
|
)
|
||
|
kwargs["headers"] = headers
|
||
|
ollama_client = ollama.Client(**kwargs)
|
||
|
data = ollama_client.embed(model=embed_model, input=texts)
|
||
|
return data["embeddings"]
|