mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-06-26 22:00:19 +00:00
122 lines
3.2 KiB
Python
122 lines
3.2 KiB
Python
![]() |
"""
|
||
|
SiliconCloud Embedding Interface Module
|
||
|
==========================
|
||
|
|
||
|
This module provides interfaces for interacting with SiliconCloud system,
|
||
|
including embedding capabilities.
|
||
|
|
||
|
Author: Lightrag team
|
||
|
Created: 2024-01-24
|
||
|
License: MIT License
|
||
|
|
||
|
Copyright (c) 2024 Lightrag
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
of this software and associated documentation files (the "Software"), to deal
|
||
|
in the Software without restriction, including without limitation the rights
|
||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
copies of the Software, and to permit persons to whom the Software is
|
||
|
furnished to do so, subject to the following conditions:
|
||
|
|
||
|
Version: 1.0.0
|
||
|
|
||
|
Change Log:
|
||
|
- 1.0.0 (2024-01-24): Initial release
|
||
|
* Added embedding generation
|
||
|
|
||
|
Dependencies:
|
||
|
- tenacity
|
||
|
- numpy
|
||
|
- pipmaster
|
||
|
- Python >= 3.10
|
||
|
|
||
|
Usage:
|
||
|
from llm_interfaces.siliconcloud import siliconcloud_model_complete, siliconcloud_embed
|
||
|
"""
|
||
|
|
||
|
__version__ = "1.0.0"
|
||
|
__author__ = "lightrag Team"
|
||
|
__status__ = "Production"
|
||
|
|
||
|
import sys
|
||
|
import copy
|
||
|
import os
|
||
|
import json
|
||
|
|
||
|
if sys.version_info < (3, 9):
|
||
|
from typing import AsyncIterator
|
||
|
else:
|
||
|
from collections.abc import AsyncIterator
|
||
|
import pipmaster as pm # Pipmaster for dynamic library install
|
||
|
|
||
|
# install specific modules
|
||
|
if not pm.is_installed("lmdeploy"):
|
||
|
pm.install("lmdeploy")
|
||
|
|
||
|
from openai import (
|
||
|
AsyncOpenAI,
|
||
|
AsyncAzureOpenAI,
|
||
|
APIConnectionError,
|
||
|
RateLimitError,
|
||
|
APITimeoutError,
|
||
|
)
|
||
|
from tenacity import (
|
||
|
retry,
|
||
|
stop_after_attempt,
|
||
|
wait_exponential,
|
||
|
retry_if_exception_type,
|
||
|
)
|
||
|
|
||
|
from lightrag.utils import (
|
||
|
wrap_embedding_func_with_attrs,
|
||
|
locate_json_string_body_from_string,
|
||
|
safe_unicode_decode,
|
||
|
logger,
|
||
|
)
|
||
|
|
||
|
from lightrag.types import GPTKeywordExtractionFormat
|
||
|
from functools import lru_cache
|
||
|
|
||
|
import numpy as np
|
||
|
from typing import Union
|
||
|
import aiohttp
|
||
|
|
||
|
@retry(
|
||
|
stop=stop_after_attempt(3),
|
||
|
wait=wait_exponential(multiplier=1, min=4, max=60),
|
||
|
retry=retry_if_exception_type(
|
||
|
(RateLimitError, APIConnectionError, APITimeoutError)
|
||
|
),
|
||
|
)
|
||
|
async def siliconcloud_embedding(
|
||
|
texts: list[str],
|
||
|
model: str = "netease-youdao/bce-embedding-base_v1",
|
||
|
base_url: str = "https://api.siliconflow.cn/v1/embeddings",
|
||
|
max_token_size: int = 512,
|
||
|
api_key: str = None,
|
||
|
) -> np.ndarray:
|
||
|
if api_key and not api_key.startswith("Bearer "):
|
||
|
api_key = "Bearer " + api_key
|
||
|
|
||
|
headers = {"Authorization": api_key, "Content-Type": "application/json"}
|
||
|
|
||
|
truncate_texts = [text[0:max_token_size] for text in texts]
|
||
|
|
||
|
payload = {"model": model, "input": truncate_texts, "encoding_format": "base64"}
|
||
|
|
||
|
base64_strings = []
|
||
|
async with aiohttp.ClientSession() as session:
|
||
|
async with session.post(base_url, headers=headers, json=payload) as response:
|
||
|
content = await response.json()
|
||
|
if "code" in content:
|
||
|
raise ValueError(content)
|
||
|
base64_strings = [item["embedding"] for item in content["data"]]
|
||
|
|
||
|
embeddings = []
|
||
|
for string in base64_strings:
|
||
|
decode_bytes = base64.b64decode(string)
|
||
|
n = len(decode_bytes) // 4
|
||
|
float_array = struct.unpack("<" + "f" * n, decode_bytes)
|
||
|
embeddings.append(float_array)
|
||
|
return np.array(embeddings)
|