mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-06-26 22:00:19 +00:00
82 lines
2.2 KiB
Python
82 lines
2.2 KiB
Python
![]() |
# pip install -q -U google-genai to use gemini as a client
|
||
|
|
||
|
import os
|
||
|
import numpy as np
|
||
|
from google import genai
|
||
|
from google.genai import types
|
||
|
from dotenv import load_dotenv
|
||
|
from lightrag.utils import EmbeddingFunc
|
||
|
from lightrag import LightRAG, QueryParam
|
||
|
from sentence_transformers import SentenceTransformer
|
||
|
|
||
|
load_dotenv()
|
||
|
gemini_api_key = os.getenv("GEMINI_API_KEY")
|
||
|
|
||
|
WORKING_DIR = "./dickens"
|
||
|
|
||
|
if os.path.exists(WORKING_DIR):
|
||
|
import shutil
|
||
|
|
||
|
shutil.rmtree(WORKING_DIR)
|
||
|
|
||
|
os.mkdir(WORKING_DIR)
|
||
|
|
||
|
|
||
|
async def llm_model_func(
|
||
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||
|
) -> str:
|
||
|
# 1. Initialize the GenAI Client with your Gemini API Key
|
||
|
client = genai.Client(api_key=gemini_api_key)
|
||
|
|
||
|
# 2. Combine prompts: system prompt, history, and user prompt
|
||
|
if history_messages is None:
|
||
|
history_messages = []
|
||
|
|
||
|
combined_prompt = ""
|
||
|
if system_prompt:
|
||
|
combined_prompt += f"{system_prompt}\n"
|
||
|
|
||
|
for msg in history_messages:
|
||
|
# Each msg is expected to be a dict: {"role": "...", "content": "..."}
|
||
|
combined_prompt += f"{msg['role']}: {msg['content']}\n"
|
||
|
|
||
|
# Finally, add the new user prompt
|
||
|
combined_prompt += f"user: {prompt}"
|
||
|
|
||
|
# 3. Call the Gemini model
|
||
|
response = client.models.generate_content(
|
||
|
model="gemini-1.5-flash",
|
||
|
contents=[combined_prompt],
|
||
|
config=types.GenerateContentConfig(
|
||
|
max_output_tokens=500,
|
||
|
temperature=0.1
|
||
|
)
|
||
|
)
|
||
|
|
||
|
# 4. Return the response text
|
||
|
return response.text
|
||
|
|
||
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||
|
model = SentenceTransformer('all-MiniLM-L6-v2')
|
||
|
embeddings = model.encode(texts, convert_to_numpy=True)
|
||
|
return embeddings
|
||
|
|
||
|
rag = LightRAG(
|
||
|
working_dir=WORKING_DIR,
|
||
|
llm_model_func=llm_model_func,
|
||
|
embedding_func=EmbeddingFunc(
|
||
|
embedding_dim=384,
|
||
|
max_token_size=8192,
|
||
|
func=embedding_func,
|
||
|
),
|
||
|
)
|
||
|
|
||
|
file_path = "story.txt"
|
||
|
with open(file_path, 'r') as file:
|
||
|
text = file.read()
|
||
|
|
||
|
rag.insert(text)
|
||
|
|
||
|
response = rag.query(query="What is the main theme of the story?", param=QueryParam(mode="hybrid", top_k=5, response_type="single line"))
|
||
|
|
||
|
print (response)
|