LightRAG/lightrag/operate.py

1665 lines
56 KiB
Python
Raw Normal View History

2024-10-10 15:02:30 +08:00
import asyncio
import json
import re
2024-11-25 15:04:38 +08:00
from tqdm.asyncio import tqdm as tqdm_async
2024-10-10 15:02:30 +08:00
from typing import Union
from collections import Counter, defaultdict
from .utils import (
logger,
clean_str,
compute_mdhash_id,
decode_tokens_by_tiktoken,
encode_string_by_tiktoken,
is_float_regex,
list_of_list_to_csv,
pack_user_ass_to_openai_messages,
split_string_by_multi_markers,
truncate_list_by_token_size,
process_combine_contexts,
compute_args_hash,
handle_cache,
save_to_cache,
CacheData,
2024-10-10 15:02:30 +08:00
)
from .base import (
BaseGraphStorage,
BaseKVStorage,
BaseVectorStorage,
TextChunkSchema,
QueryParam,
)
from .prompt import GRAPH_FIELD_SEP, PROMPTS
import time
2024-10-10 15:02:30 +08:00
2024-10-10 15:02:30 +08:00
def chunking_by_token_size(
2025-01-07 16:26:12 +08:00
content: str,
split_by_character=None,
split_by_character_only=False,
2025-01-07 16:26:12 +08:00
overlap_token_size=128,
max_token_size=1024,
tiktoken_model="gpt-4o",
2025-01-09 17:20:24 +05:30
**kwargs,
2024-10-10 15:02:30 +08:00
):
tokens = encode_string_by_tiktoken(content, model_name=tiktoken_model)
results = []
if split_by_character:
raw_chunks = content.split(split_by_character)
new_chunks = []
if split_by_character_only:
for chunk in raw_chunks:
_tokens = encode_string_by_tiktoken(chunk, model_name=tiktoken_model)
new_chunks.append((len(_tokens), chunk))
else:
for chunk in raw_chunks:
_tokens = encode_string_by_tiktoken(chunk, model_name=tiktoken_model)
if len(_tokens) > max_token_size:
for start in range(
0, len(_tokens), max_token_size - overlap_token_size
):
chunk_content = decode_tokens_by_tiktoken(
_tokens[start : start + max_token_size],
model_name=tiktoken_model,
)
new_chunks.append(
(min(max_token_size, len(_tokens) - start), chunk_content)
)
else:
new_chunks.append((len(_tokens), chunk))
for index, (_len, chunk) in enumerate(new_chunks):
results.append(
{
"tokens": _len,
"content": chunk.strip(),
"chunk_order_index": index,
}
)
else:
for index, start in enumerate(
2025-01-07 16:26:12 +08:00
range(0, len(tokens), max_token_size - overlap_token_size)
):
chunk_content = decode_tokens_by_tiktoken(
2025-01-07 16:26:12 +08:00
tokens[start : start + max_token_size], model_name=tiktoken_model
)
results.append(
{
"tokens": min(max_token_size, len(tokens) - start),
"content": chunk_content.strip(),
"chunk_order_index": index,
}
)
2024-10-10 15:02:30 +08:00
return results
2024-10-10 15:02:30 +08:00
async def _handle_entity_relation_summary(
2025-01-07 16:26:12 +08:00
entity_or_relation_name: str,
description: str,
global_config: dict,
2024-10-10 15:02:30 +08:00
) -> str:
use_llm_func: callable = global_config["llm_model_func"]
llm_max_tokens = global_config["llm_model_max_token_size"]
tiktoken_model_name = global_config["tiktoken_model_name"]
summary_max_tokens = global_config["entity_summary_to_max_tokens"]
2024-11-28 14:28:29 +01:00
language = global_config["addon_params"].get(
"language", PROMPTS["DEFAULT_LANGUAGE"]
)
2024-10-10 15:02:30 +08:00
tokens = encode_string_by_tiktoken(description, model_name=tiktoken_model_name)
if len(tokens) < summary_max_tokens: # No need for summary
return description
prompt_template = PROMPTS["summarize_entity_descriptions"]
use_description = decode_tokens_by_tiktoken(
tokens[:llm_max_tokens], model_name=tiktoken_model_name
)
context_base = dict(
entity_name=entity_or_relation_name,
description_list=use_description.split(GRAPH_FIELD_SEP),
2024-11-28 14:28:29 +01:00
language=language,
2024-10-10 15:02:30 +08:00
)
use_prompt = prompt_template.format(**context_base)
logger.debug(f"Trigger summary: {entity_or_relation_name}")
summary = await use_llm_func(use_prompt, max_tokens=summary_max_tokens)
return summary
async def _handle_single_entity_extraction(
2025-01-07 16:26:12 +08:00
record_attributes: list[str],
chunk_key: str,
2024-10-10 15:02:30 +08:00
):
2024-10-18 15:33:11 +08:00
if len(record_attributes) < 4 or record_attributes[0] != '"entity"':
2024-10-10 15:02:30 +08:00
return None
# add this record as a node in the G
entity_name = clean_str(record_attributes[1].upper())
if not entity_name.strip():
return None
entity_type = clean_str(record_attributes[2].upper())
entity_description = clean_str(record_attributes[3])
entity_source_id = chunk_key
return dict(
entity_name=entity_name,
entity_type=entity_type,
description=entity_description,
source_id=entity_source_id,
)
async def _handle_single_relationship_extraction(
2025-01-07 16:26:12 +08:00
record_attributes: list[str],
chunk_key: str,
2024-10-10 15:02:30 +08:00
):
2024-10-18 15:33:11 +08:00
if len(record_attributes) < 5 or record_attributes[0] != '"relationship"':
2024-10-10 15:02:30 +08:00
return None
# add this record as edge
source = clean_str(record_attributes[1].upper())
target = clean_str(record_attributes[2].upper())
edge_description = clean_str(record_attributes[3])
edge_keywords = clean_str(record_attributes[4])
edge_source_id = chunk_key
weight = (
float(record_attributes[-1]) if is_float_regex(record_attributes[-1]) else 1.0
)
return dict(
src_id=source,
tgt_id=target,
weight=weight,
description=edge_description,
keywords=edge_keywords,
source_id=edge_source_id,
metadata={"created_at": time.time()},
2024-10-10 15:02:30 +08:00
)
async def _merge_nodes_then_upsert(
2025-01-07 16:26:12 +08:00
entity_name: str,
nodes_data: list[dict],
knowledge_graph_inst: BaseGraphStorage,
global_config: dict,
2024-10-10 15:02:30 +08:00
):
already_entity_types = []
2024-10-10 15:02:30 +08:00
already_source_ids = []
already_description = []
2024-10-26 00:11:21 -04:00
already_node = await knowledge_graph_inst.get_node(entity_name)
2024-10-10 15:02:30 +08:00
if already_node is not None:
already_entity_types.append(already_node["entity_type"])
2024-10-10 15:02:30 +08:00
already_source_ids.extend(
split_string_by_multi_markers(already_node["source_id"], [GRAPH_FIELD_SEP])
)
already_description.append(already_node["description"])
entity_type = sorted(
Counter(
[dp["entity_type"] for dp in nodes_data] + already_entity_types
2024-10-10 15:02:30 +08:00
).items(),
key=lambda x: x[1],
reverse=True,
)[0][0]
description = GRAPH_FIELD_SEP.join(
sorted(set([dp["description"] for dp in nodes_data] + already_description))
)
source_id = GRAPH_FIELD_SEP.join(
set([dp["source_id"] for dp in nodes_data] + already_source_ids)
)
description = await _handle_entity_relation_summary(
entity_name, description, global_config
)
node_data = dict(
entity_type=entity_type,
description=description,
source_id=source_id,
)
2024-10-26 00:11:21 -04:00
await knowledge_graph_inst.upsert_node(
2024-10-10 15:02:30 +08:00
entity_name,
node_data=node_data,
)
node_data["entity_name"] = entity_name
return node_data
async def _merge_edges_then_upsert(
2025-01-07 16:26:12 +08:00
src_id: str,
tgt_id: str,
edges_data: list[dict],
knowledge_graph_inst: BaseGraphStorage,
global_config: dict,
2024-10-10 15:02:30 +08:00
):
already_weights = []
already_source_ids = []
already_description = []
already_keywords = []
2024-10-26 00:11:21 -04:00
if await knowledge_graph_inst.has_edge(src_id, tgt_id):
already_edge = await knowledge_graph_inst.get_edge(src_id, tgt_id)
2024-10-10 15:02:30 +08:00
already_weights.append(already_edge["weight"])
already_source_ids.extend(
split_string_by_multi_markers(already_edge["source_id"], [GRAPH_FIELD_SEP])
)
already_description.append(already_edge["description"])
already_keywords.extend(
split_string_by_multi_markers(already_edge["keywords"], [GRAPH_FIELD_SEP])
)
weight = sum([dp["weight"] for dp in edges_data] + already_weights)
description = GRAPH_FIELD_SEP.join(
sorted(set([dp["description"] for dp in edges_data] + already_description))
)
keywords = GRAPH_FIELD_SEP.join(
sorted(set([dp["keywords"] for dp in edges_data] + already_keywords))
)
source_id = GRAPH_FIELD_SEP.join(
set([dp["source_id"] for dp in edges_data] + already_source_ids)
)
for need_insert_id in [src_id, tgt_id]:
2024-10-26 00:11:21 -04:00
if not (await knowledge_graph_inst.has_node(need_insert_id)):
await knowledge_graph_inst.upsert_node(
2024-10-10 15:02:30 +08:00
need_insert_id,
node_data={
"source_id": source_id,
"description": description,
"entity_type": '"UNKNOWN"',
},
)
description = await _handle_entity_relation_summary(
f"({src_id}, {tgt_id})", description, global_config
2024-10-10 15:02:30 +08:00
)
2024-10-26 00:11:21 -04:00
await knowledge_graph_inst.upsert_edge(
2024-10-10 15:02:30 +08:00
src_id,
tgt_id,
edge_data=dict(
weight=weight,
description=description,
keywords=keywords,
source_id=source_id,
),
)
edge_data = dict(
src_id=src_id,
tgt_id=tgt_id,
description=description,
keywords=keywords,
)
2024-10-10 15:02:30 +08:00
return edge_data
2024-10-10 15:02:30 +08:00
async def extract_entities(
2025-01-07 16:26:12 +08:00
chunks: dict[str, TextChunkSchema],
knowledge_graph_inst: BaseGraphStorage,
entity_vdb: BaseVectorStorage,
relationships_vdb: BaseVectorStorage,
global_config: dict,
llm_response_cache: BaseKVStorage = None,
2024-10-10 15:02:30 +08:00
) -> Union[BaseGraphStorage, None]:
use_llm_func: callable = global_config["llm_model_func"]
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
enable_llm_cache_for_entity_extract: bool = global_config[
"enable_llm_cache_for_entity_extract"
]
2024-10-10 15:02:30 +08:00
ordered_chunks = list(chunks.items())
2024-11-25 13:29:55 +08:00
# add language and example number params to prompt
2024-11-25 13:40:38 +08:00
language = global_config["addon_params"].get(
"language", PROMPTS["DEFAULT_LANGUAGE"]
)
entity_types = global_config["addon_params"].get(
"entity_types", PROMPTS["DEFAULT_ENTITY_TYPES"]
)
2024-11-25 13:29:55 +08:00
example_number = global_config["addon_params"].get("example_number", None)
2024-11-25 13:40:38 +08:00
if example_number and example_number < len(PROMPTS["entity_extraction_examples"]):
examples = "\n".join(
PROMPTS["entity_extraction_examples"][: int(example_number)]
)
2024-11-25 13:29:55 +08:00
else:
2024-11-25 13:40:38 +08:00
examples = "\n".join(PROMPTS["entity_extraction_examples"])
2024-12-03 22:25:50 +08:00
example_context_base = dict(
tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"],
record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"],
completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
entity_types=",".join(entity_types),
2024-12-03 22:25:50 +08:00
language=language,
)
# add example's format
examples = examples.format(**example_context_base)
2024-10-10 15:02:30 +08:00
entity_extract_prompt = PROMPTS["entity_extraction"]
context_base = dict(
tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"],
record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"],
completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
entity_types=",".join(entity_types),
2024-11-25 13:29:55 +08:00
examples=examples,
2024-11-25 13:40:38 +08:00
language=language,
)
2024-10-10 15:02:30 +08:00
continue_prompt = PROMPTS["entiti_continue_extraction"]
if_loop_prompt = PROMPTS["entiti_if_loop_extraction"]
already_processed = 0
already_entities = 0
already_relations = 0
async def _user_llm_func_with_cache(
2025-01-07 16:26:12 +08:00
input_text: str, history_messages: list[dict[str, str]] = None
) -> str:
if enable_llm_cache_for_entity_extract and llm_response_cache:
need_to_restore = False
if (
2025-01-07 16:26:12 +08:00
global_config["embedding_cache_config"]
and global_config["embedding_cache_config"]["enabled"]
):
new_config = global_config.copy()
new_config["embedding_cache_config"] = None
new_config["enable_llm_cache"] = True
llm_response_cache.global_config = new_config
need_to_restore = True
if history_messages:
history = json.dumps(history_messages)
_prompt = history + "\n" + input_text
else:
_prompt = input_text
arg_hash = compute_args_hash(_prompt)
cached_return, _1, _2, _3 = await handle_cache(
llm_response_cache, arg_hash, _prompt, "default"
)
if need_to_restore:
llm_response_cache.global_config = global_config
if cached_return:
return cached_return
if history_messages:
res: str = await use_llm_func(
input_text, history_messages=history_messages
)
else:
res: str = await use_llm_func(input_text)
await save_to_cache(
llm_response_cache,
CacheData(args_hash=arg_hash, content=res, prompt=_prompt),
)
return res
if history_messages:
return await use_llm_func(input_text, history_messages=history_messages)
else:
return await use_llm_func(input_text)
2024-10-10 15:02:30 +08:00
async def _process_single_content(chunk_key_dp: tuple[str, TextChunkSchema]):
nonlocal already_processed, already_entities, already_relations
chunk_key = chunk_key_dp[0]
chunk_dp = chunk_key_dp[1]
content = chunk_dp["content"]
2024-12-04 16:01:19 +08:00
# hint_prompt = entity_extract_prompt.format(**context_base, input_text=content)
2024-12-04 19:44:04 +08:00
hint_prompt = entity_extract_prompt.format(
**context_base, input_text="{input_text}"
).format(**context_base, input_text=content)
2024-12-04 16:01:19 +08:00
final_result = await _user_llm_func_with_cache(hint_prompt)
2024-10-10 15:02:30 +08:00
history = pack_user_ass_to_openai_messages(hint_prompt, final_result)
for now_glean_index in range(entity_extract_max_gleaning):
glean_result = await _user_llm_func_with_cache(
continue_prompt, history_messages=history
)
2024-10-10 15:02:30 +08:00
history += pack_user_ass_to_openai_messages(continue_prompt, glean_result)
final_result += glean_result
if now_glean_index == entity_extract_max_gleaning - 1:
break
if_loop_result: str = await _user_llm_func_with_cache(
2024-10-10 15:02:30 +08:00
if_loop_prompt, history_messages=history
)
if_loop_result = if_loop_result.strip().strip('"').strip("'").lower()
if if_loop_result != "yes":
break
records = split_string_by_multi_markers(
final_result,
[context_base["record_delimiter"], context_base["completion_delimiter"]],
)
maybe_nodes = defaultdict(list)
maybe_edges = defaultdict(list)
for record in records:
record = re.search(r"\((.*)\)", record)
if record is None:
continue
record = record.group(1)
record_attributes = split_string_by_multi_markers(
record, [context_base["tuple_delimiter"]]
)
if_entities = await _handle_single_entity_extraction(
record_attributes, chunk_key
)
if if_entities is not None:
maybe_nodes[if_entities["entity_name"]].append(if_entities)
continue
if_relation = await _handle_single_relationship_extraction(
record_attributes, chunk_key
)
if if_relation is not None:
maybe_edges[(if_relation["src_id"], if_relation["tgt_id"])].append(
if_relation
)
already_processed += 1
already_entities += len(maybe_nodes)
already_relations += len(maybe_edges)
now_ticks = PROMPTS["process_tickers"][
already_processed % len(PROMPTS["process_tickers"])
2025-01-07 16:26:12 +08:00
]
2024-10-10 15:02:30 +08:00
print(
f"{now_ticks} Processed {already_processed} chunks, {already_entities} entities(duplicated), {already_relations} relations(duplicated)\r",
end="",
flush=True,
)
return dict(maybe_nodes), dict(maybe_edges)
2024-11-25 15:04:38 +08:00
results = []
for result in tqdm_async(
2025-01-07 16:26:12 +08:00
asyncio.as_completed([_process_single_content(c) for c in ordered_chunks]),
total=len(ordered_chunks),
desc="Extracting entities from chunks",
unit="chunk",
2024-11-25 15:04:38 +08:00
):
results.append(await result)
2024-10-10 15:02:30 +08:00
maybe_nodes = defaultdict(list)
maybe_edges = defaultdict(list)
for m_nodes, m_edges in results:
for k, v in m_nodes.items():
maybe_nodes[k].extend(v)
for k, v in m_edges.items():
maybe_edges[tuple(sorted(k))].extend(v)
2024-11-25 15:04:38 +08:00
logger.info("Inserting entities into storage...")
all_entities_data = []
for result in tqdm_async(
2025-01-07 16:26:12 +08:00
asyncio.as_completed(
[
_merge_nodes_then_upsert(k, v, knowledge_graph_inst, global_config)
for k, v in maybe_nodes.items()
]
),
total=len(maybe_nodes),
desc="Inserting entities",
unit="entity",
2024-11-25 15:04:38 +08:00
):
all_entities_data.append(await result)
logger.info("Inserting relationships into storage...")
all_relationships_data = []
for result in tqdm_async(
2025-01-07 16:26:12 +08:00
asyncio.as_completed(
[
_merge_edges_then_upsert(
k[0], k[1], v, knowledge_graph_inst, global_config
)
for k, v in maybe_edges.items()
]
),
total=len(maybe_edges),
desc="Inserting relationships",
unit="relationship",
2024-11-25 15:04:38 +08:00
):
all_relationships_data.append(await result)
if not len(all_entities_data) and not len(all_relationships_data):
logger.warning(
2024-12-10 14:15:43 +08:00
"Didn't extract any entities and relationships, maybe your LLM is not working"
)
2024-10-10 15:02:30 +08:00
return None
if not len(all_entities_data):
logger.warning("Didn't extract any entities")
if not len(all_relationships_data):
logger.warning("Didn't extract any relationships")
2024-10-10 15:02:30 +08:00
if entity_vdb is not None:
data_for_vdb = {
compute_mdhash_id(dp["entity_name"], prefix="ent-"): {
"content": dp["entity_name"] + dp["description"],
"entity_name": dp["entity_name"],
}
for dp in all_entities_data
}
await entity_vdb.upsert(data_for_vdb)
if relationships_vdb is not None:
data_for_vdb = {
compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): {
"src_id": dp["src_id"],
"tgt_id": dp["tgt_id"],
"content": dp["keywords"]
2025-01-07 16:26:12 +08:00
+ dp["src_id"]
+ dp["tgt_id"]
+ dp["description"],
"metadata": {
"created_at": dp.get("metadata", {}).get("created_at", time.time())
},
2024-10-10 15:02:30 +08:00
}
for dp in all_relationships_data
}
await relationships_vdb.upsert(data_for_vdb)
2024-10-26 00:11:21 -04:00
return knowledge_graph_inst
2024-10-10 15:02:30 +08:00
2024-11-25 13:40:38 +08:00
2024-11-25 13:29:55 +08:00
async def kg_query(
2025-01-07 16:26:12 +08:00
query,
knowledge_graph_inst: BaseGraphStorage,
entities_vdb: BaseVectorStorage,
relationships_vdb: BaseVectorStorage,
text_chunks_db: BaseKVStorage[TextChunkSchema],
query_param: QueryParam,
global_config: dict,
hashing_kv: BaseKVStorage = None,
2024-10-10 15:02:30 +08:00
) -> str:
# Handle cache
use_model_func = global_config["llm_model_func"]
args_hash = compute_args_hash(query_param.mode, query)
cached_response, quantized, min_val, max_val = await handle_cache(
hashing_kv, args_hash, query, query_param.mode
)
if cached_response is not None:
return cached_response
2024-11-25 13:29:55 +08:00
example_number = global_config["addon_params"].get("example_number", None)
if example_number and example_number < len(PROMPTS["keywords_extraction_examples"]):
2024-11-25 13:40:38 +08:00
examples = "\n".join(
PROMPTS["keywords_extraction_examples"][: int(example_number)]
)
2024-11-25 13:29:55 +08:00
else:
2024-11-25 13:40:38 +08:00
examples = "\n".join(PROMPTS["keywords_extraction_examples"])
2024-11-28 14:28:29 +01:00
language = global_config["addon_params"].get(
"language", PROMPTS["DEFAULT_LANGUAGE"]
)
2024-11-25 13:40:38 +08:00
2024-11-25 13:29:55 +08:00
# Set mode
if query_param.mode not in ["local", "global", "hybrid"]:
logger.error(f"Unknown mode {query_param.mode} in kg_query")
return PROMPTS["fail_response"]
2024-11-25 13:40:38 +08:00
2024-11-25 13:29:55 +08:00
# LLM generate keywords
2024-10-10 15:02:30 +08:00
kw_prompt_temp = PROMPTS["keywords_extraction"]
2024-11-28 14:28:29 +01:00
kw_prompt = kw_prompt_temp.format(query=query, examples=examples, language=language)
result = await use_model_func(kw_prompt, keyword_extraction=True)
2024-11-25 13:40:38 +08:00
logger.info("kw_prompt result:")
2024-11-25 13:29:55 +08:00
print(result)
2024-10-10 15:02:30 +08:00
try:
# json_text = locate_json_string_body_from_string(result) # handled in use_model_func
2024-12-05 20:22:44 +08:00
match = re.search(r"\{.*\}", result, re.DOTALL)
if match:
result = match.group(0)
keywords_data = json.loads(result)
hl_keywords = keywords_data.get("high_level_keywords", [])
ll_keywords = keywords_data.get("low_level_keywords", [])
else:
logger.error("No JSON-like structure found in the result.")
return PROMPTS["fail_response"]
2024-11-25 13:40:38 +08:00
2024-11-25 13:29:55 +08:00
# Handle parsing error
except json.JSONDecodeError as e:
print(f"JSON parsing error: {e} {result}")
return PROMPTS["fail_response"]
2024-11-25 13:40:38 +08:00
2024-11-25 13:29:55 +08:00
# Handdle keywords missing
if hl_keywords == [] and ll_keywords == []:
logger.warning("low_level_keywords and high_level_keywords is empty")
2024-11-25 13:40:38 +08:00
return PROMPTS["fail_response"]
if ll_keywords == [] and query_param.mode in ["local", "hybrid"]:
2025-01-07 22:02:34 +08:00
logger.warning(
"low_level_keywords is empty, switching from %s mode to global mode",
query_param.mode,
)
query_param.mode = "global"
2024-11-25 13:40:38 +08:00
if hl_keywords == [] and query_param.mode in ["global", "hybrid"]:
2025-01-07 22:02:34 +08:00
logger.warning(
"high_level_keywords is empty, switching from %s mode to local mode",
query_param.mode,
)
query_param.mode = "local"
ll_keywords = ", ".join(ll_keywords) if ll_keywords else ""
hl_keywords = ", ".join(hl_keywords) if hl_keywords else ""
logger.info("Using %s mode for query processing", query_param.mode)
2024-11-25 13:40:38 +08:00
2024-11-25 13:29:55 +08:00
# Build context
2024-11-25 13:40:38 +08:00
keywords = [ll_keywords, hl_keywords]
2024-11-25 13:29:55 +08:00
context = await _build_query_context(
2024-11-25 13:40:38 +08:00
keywords,
knowledge_graph_inst,
entities_vdb,
relationships_vdb,
text_chunks_db,
query_param,
)
2024-10-10 15:02:30 +08:00
if query_param.only_need_context:
return context
if context is None:
return PROMPTS["fail_response"]
sys_prompt_temp = PROMPTS["rag_response"]
sys_prompt = sys_prompt_temp.format(
context_data=context, response_type=query_param.response_type
2024-11-25 13:40:38 +08:00
)
if query_param.only_need_prompt:
return sys_prompt
2024-10-10 15:02:30 +08:00
response = await use_model_func(
query,
system_prompt=sys_prompt,
stream=query_param.stream,
2024-11-25 13:40:38 +08:00
)
if isinstance(response, str) and len(response) > len(sys_prompt):
response = (
response.replace(sys_prompt, "")
.replace("user", "")
.replace("model", "")
.replace(query, "")
.replace("<system>", "")
.replace("</system>", "")
.strip()
)
# Save to cache
await save_to_cache(
hashing_kv,
CacheData(
args_hash=args_hash,
content=response,
prompt=query,
quantized=quantized,
min_val=min_val,
max_val=max_val,
mode=query_param.mode,
),
)
2024-10-10 15:02:30 +08:00
return response
async def kg_query_with_keywords(
query: str,
knowledge_graph_inst: BaseGraphStorage,
entities_vdb: BaseVectorStorage,
relationships_vdb: BaseVectorStorage,
text_chunks_db: BaseKVStorage[TextChunkSchema],
query_param: QueryParam,
global_config: dict,
hashing_kv: BaseKVStorage = None,
) -> str:
"""
Refactored kg_query that does NOT extract keywords by itself.
It expects hl_keywords and ll_keywords to be set in query_param, or defaults to empty.
Then it uses those to build context and produce a final LLM response.
"""
# ---------------------------
# 0) Handle potential cache
# ---------------------------
use_model_func = global_config["llm_model_func"]
args_hash = compute_args_hash(query_param.mode, query)
cached_response, quantized, min_val, max_val = await handle_cache(
hashing_kv, args_hash, query, query_param.mode
)
if cached_response is not None:
return cached_response
# ---------------------------
# 1) RETRIEVE KEYWORDS FROM query_param
# ---------------------------
# If these fields don't exist, default to empty lists/strings.
hl_keywords = getattr(query_param, "hl_keywords", []) or []
ll_keywords = getattr(query_param, "ll_keywords", []) or []
# If neither has any keywords, you could handle that logic here.
if not hl_keywords and not ll_keywords:
logger.warning("No keywords found in query_param. Could default to global mode or fail.")
return PROMPTS["fail_response"]
if not ll_keywords and query_param.mode in ["local", "hybrid"]:
logger.warning("low_level_keywords is empty, switching to global mode.")
query_param.mode = "global"
if not hl_keywords and query_param.mode in ["global", "hybrid"]:
logger.warning("high_level_keywords is empty, switching to local mode.")
query_param.mode = "local"
# Flatten low-level and high-level keywords if needed
ll_keywords_flat = [item for sublist in ll_keywords for item in sublist] if any(isinstance(i, list) for i in ll_keywords) else ll_keywords
hl_keywords_flat = [item for sublist in hl_keywords for item in sublist] if any(isinstance(i, list) for i in hl_keywords) else hl_keywords
# Join the flattened lists
ll_keywords_str = ", ".join(ll_keywords_flat) if ll_keywords_flat else ""
hl_keywords_str = ", ".join(hl_keywords_flat) if hl_keywords_flat else ""
keywords = [ll_keywords_str, hl_keywords_str]
logger.info("Using %s mode for query processing", query_param.mode)
# ---------------------------
# 2) BUILD CONTEXT
# ---------------------------
context = await _build_query_context(
keywords,
knowledge_graph_inst,
entities_vdb,
relationships_vdb,
text_chunks_db,
query_param,
)
if not context:
return PROMPTS["fail_response"]
# If only context is needed, return it
if query_param.only_need_context:
return context
# ---------------------------
# 3) BUILD THE SYSTEM PROMPT + CALL LLM
# ---------------------------
sys_prompt_temp = PROMPTS["rag_response"]
sys_prompt = sys_prompt_temp.format(
context_data=context, response_type=query_param.response_type
)
if query_param.only_need_prompt:
return sys_prompt
# Now call the LLM with the final system prompt
response = await use_model_func(
query,
system_prompt=sys_prompt,
stream=query_param.stream,
)
# Clean up the response
if isinstance(response, str) and len(response) > len(sys_prompt):
response = (
response.replace(sys_prompt, "")
.replace("user", "")
.replace("model", "")
.replace(query, "")
.replace("<system>", "")
.replace("</system>", "")
.strip()
)
# ---------------------------
# 4) SAVE TO CACHE
# ---------------------------
await save_to_cache(
hashing_kv,
CacheData(
args_hash=args_hash,
content=response,
prompt=query,
quantized=quantized,
min_val=min_val,
max_val=max_val,
mode=query_param.mode,
),
)
return response
async def extract_keywords_only(
text: str,
param: QueryParam,
global_config: dict,
hashing_kv: BaseKVStorage = None,
) -> tuple[list[str], list[str]]:
"""
Extract high-level and low-level keywords from the given 'text' using the LLM.
This method does NOT build the final RAG context or provide a final answer.
It ONLY extracts keywords (hl_keywords, ll_keywords).
"""
# 1. Handle cache if needed
args_hash = compute_args_hash(param.mode, text)
cached_response, quantized, min_val, max_val = await handle_cache(
hashing_kv, args_hash, text, param.mode
)
if cached_response is not None:
# parse the cached_response if its JSON containing keywords
# or simply return (hl_keywords, ll_keywords) from cached
# Assuming cached_response is in the same JSON structure:
match = re.search(r"\{.*\}", cached_response, re.DOTALL)
if match:
keywords_data = json.loads(match.group(0))
hl_keywords = keywords_data.get("high_level_keywords", [])
ll_keywords = keywords_data.get("low_level_keywords", [])
return hl_keywords, ll_keywords
return [], []
# 2. Build the examples
example_number = global_config["addon_params"].get("example_number", None)
if example_number and example_number < len(PROMPTS["keywords_extraction_examples"]):
examples = "\n".join(
PROMPTS["keywords_extraction_examples"][: int(example_number)]
)
else:
examples = "\n".join(PROMPTS["keywords_extraction_examples"])
language = global_config["addon_params"].get(
"language", PROMPTS["DEFAULT_LANGUAGE"]
)
# 3. Build the keyword-extraction prompt
kw_prompt_temp = PROMPTS["keywords_extraction"]
kw_prompt = kw_prompt_temp.format(query=text, examples=examples, language=language)
# 4. Call the LLM for keyword extraction
use_model_func = global_config["llm_model_func"]
result = await use_model_func(kw_prompt, keyword_extraction=True)
# 5. Parse out JSON from the LLM response
match = re.search(r"\{.*\}", result, re.DOTALL)
if not match:
logger.error("No JSON-like structure found in the result.")
return [], []
try:
keywords_data = json.loads(match.group(0))
except json.JSONDecodeError as e:
logger.error(f"JSON parsing error: {e}")
return [], []
hl_keywords = keywords_data.get("high_level_keywords", [])
ll_keywords = keywords_data.get("low_level_keywords", [])
# 6. Cache the result if needed
await save_to_cache(
hashing_kv,
CacheData(
args_hash=args_hash,
content=result,
prompt=text,
quantized=quantized,
min_val=min_val,
max_val=max_val,
mode=param.mode,
),
)
return hl_keywords, ll_keywords
2024-11-25 13:29:55 +08:00
async def _build_query_context(
2025-01-07 16:26:12 +08:00
query: list,
knowledge_graph_inst: BaseGraphStorage,
entities_vdb: BaseVectorStorage,
relationships_vdb: BaseVectorStorage,
text_chunks_db: BaseKVStorage[TextChunkSchema],
query_param: QueryParam,
2024-11-25 13:40:38 +08:00
):
# ll_entities_context, ll_relations_context, ll_text_units_context = "", "", ""
# hl_entities_context, hl_relations_context, hl_text_units_context = "", "", ""
ll_keywords, hl_keywords = query[0], query[1]
if query_param.mode == "local":
entities_context, relations_context, text_units_context = await _get_node_data(
ll_keywords,
knowledge_graph_inst,
entities_vdb,
text_chunks_db,
query_param,
2024-11-25 13:40:38 +08:00
)
elif query_param.mode == "global":
entities_context, relations_context, text_units_context = await _get_edge_data(
hl_keywords,
knowledge_graph_inst,
relationships_vdb,
text_chunks_db,
query_param,
)
else: # hybrid mode
2025-01-07 22:02:34 +08:00
(
2024-11-25 13:40:38 +08:00
ll_entities_context,
ll_relations_context,
ll_text_units_context,
2025-01-07 22:02:34 +08:00
) = await _get_node_data(
ll_keywords,
knowledge_graph_inst,
entities_vdb,
text_chunks_db,
query_param,
2024-11-25 13:40:38 +08:00
)
2025-01-07 22:02:34 +08:00
(
2024-11-25 13:40:38 +08:00
hl_entities_context,
hl_relations_context,
hl_text_units_context,
2025-01-07 22:02:34 +08:00
) = await _get_edge_data(
hl_keywords,
knowledge_graph_inst,
relationships_vdb,
text_chunks_db,
query_param,
)
2024-11-25 13:40:38 +08:00
entities_context, relations_context, text_units_context = combine_contexts(
[hl_entities_context, ll_entities_context],
[hl_relations_context, ll_relations_context],
[hl_text_units_context, ll_text_units_context],
)
2024-11-25 13:29:55 +08:00
return f"""
-----Entities-----
```csv
{entities_context}
```
-----Relationships-----
```csv
{relations_context}
```
-----Sources-----
```csv
{text_units_context}
```
"""
2024-11-25 13:29:55 +08:00
async def _get_node_data(
2025-01-07 16:26:12 +08:00
query,
knowledge_graph_inst: BaseGraphStorage,
entities_vdb: BaseVectorStorage,
text_chunks_db: BaseKVStorage[TextChunkSchema],
query_param: QueryParam,
2024-10-10 15:02:30 +08:00
):
# get similar entities
2024-10-10 15:02:30 +08:00
results = await entities_vdb.query(query, top_k=query_param.top_k)
if not len(results):
return "", "", ""
# get entity information
2024-10-10 15:02:30 +08:00
node_datas = await asyncio.gather(
*[knowledge_graph_inst.get_node(r["entity_name"]) for r in results]
)
if not all([n is not None for n in node_datas]):
logger.warning("Some nodes are missing, maybe the storage is damaged")
2024-11-25 13:40:38 +08:00
# get entity degree
2024-10-10 15:02:30 +08:00
node_degrees = await asyncio.gather(
*[knowledge_graph_inst.node_degree(r["entity_name"]) for r in results]
)
node_datas = [
{**n, "entity_name": k["entity_name"], "rank": d}
for k, n, d in zip(results, node_datas, node_degrees)
if n is not None
2024-11-06 11:18:14 -05:00
] # what is this text_chunks_db doing. dont remember it in airvx. check the diagram.
2024-11-26 10:21:39 +08:00
# get entitytext chunk
2024-10-10 15:02:30 +08:00
use_text_units = await _find_most_related_text_unit_from_entities(
node_datas, query_param, text_chunks_db, knowledge_graph_inst
)
# get relate edges
2024-10-10 15:02:30 +08:00
use_relations = await _find_most_related_edges_from_entities(
node_datas, query_param, knowledge_graph_inst
)
logger.info(
f"Local query uses {len(node_datas)} entites, {len(use_relations)} relations, {len(use_text_units)} text units"
2024-11-25 13:40:38 +08:00
)
2024-11-25 13:29:55 +08:00
# build prompt
2024-10-10 15:02:30 +08:00
entites_section_list = [["id", "entity", "type", "description", "rank"]]
for i, n in enumerate(node_datas):
entites_section_list.append(
[
i,
n["entity_name"],
n.get("entity_type", "UNKNOWN"),
n.get("description", "UNKNOWN"),
n["rank"],
]
)
entities_context = list_of_list_to_csv(entites_section_list)
relations_section_list = [
[
"id",
"source",
"target",
"description",
"keywords",
"weight",
"rank",
"created_at",
]
2024-10-10 15:02:30 +08:00
]
for i, e in enumerate(use_relations):
created_at = e.get("created_at", "UNKNOWN")
# Convert timestamp to readable format
if isinstance(created_at, (int, float)):
created_at = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(created_at))
2024-10-10 15:02:30 +08:00
relations_section_list.append(
[
i,
e["src_tgt"][0],
e["src_tgt"][1],
e["description"],
e["keywords"],
e["weight"],
e["rank"],
created_at,
2024-10-10 15:02:30 +08:00
]
)
relations_context = list_of_list_to_csv(relations_section_list)
text_units_section_list = [["id", "content"]]
for i, t in enumerate(use_text_units):
text_units_section_list.append([i, t["content"]])
text_units_context = list_of_list_to_csv(text_units_section_list)
2024-11-25 13:40:38 +08:00
return entities_context, relations_context, text_units_context
2024-10-10 15:02:30 +08:00
2024-10-10 15:02:30 +08:00
async def _find_most_related_text_unit_from_entities(
2025-01-07 16:26:12 +08:00
node_datas: list[dict],
query_param: QueryParam,
text_chunks_db: BaseKVStorage[TextChunkSchema],
knowledge_graph_inst: BaseGraphStorage,
2024-10-10 15:02:30 +08:00
):
text_units = [
split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP])
for dp in node_datas
]
edges = await asyncio.gather(
*[knowledge_graph_inst.get_node_edges(dp["entity_name"]) for dp in node_datas]
)
all_one_hop_nodes = set()
for this_edges in edges:
if not this_edges:
continue
all_one_hop_nodes.update([e[1] for e in this_edges])
2024-11-11 10:45:22 +08:00
2024-10-10 15:02:30 +08:00
all_one_hop_nodes = list(all_one_hop_nodes)
all_one_hop_nodes_data = await asyncio.gather(
*[knowledge_graph_inst.get_node(e) for e in all_one_hop_nodes]
)
2024-11-11 10:45:22 +08:00
2024-11-05 18:36:59 -08:00
# Add null check for node data
2024-10-10 15:02:30 +08:00
all_one_hop_text_units_lookup = {
k: set(split_string_by_multi_markers(v["source_id"], [GRAPH_FIELD_SEP]))
for k, v in zip(all_one_hop_nodes, all_one_hop_nodes_data)
2024-11-05 18:36:59 -08:00
if v is not None and "source_id" in v # Add source_id check
2024-10-10 15:02:30 +08:00
}
2024-11-11 10:45:22 +08:00
2024-10-10 15:02:30 +08:00
all_text_units_lookup = {}
for index, (this_text_units, this_edges) in enumerate(zip(text_units, edges)):
for c_id in this_text_units:
2024-11-21 14:35:18 +08:00
if c_id not in all_text_units_lookup:
all_text_units_lookup[c_id] = {
"data": await text_chunks_db.get_by_id(c_id),
"order": index,
"relation_counts": 0,
}
if this_edges:
2024-11-05 18:36:59 -08:00
for e in this_edges:
if (
2025-01-07 16:26:12 +08:00
e[1] in all_one_hop_text_units_lookup
and c_id in all_one_hop_text_units_lookup[e[1]]
2024-11-05 18:36:59 -08:00
):
2024-11-21 14:35:18 +08:00
all_text_units_lookup[c_id]["relation_counts"] += 1
2024-11-11 10:45:22 +08:00
2024-11-05 18:36:59 -08:00
# Filter out None values and ensure data has content
2024-10-10 15:02:30 +08:00
all_text_units = [
2024-11-11 10:45:22 +08:00
{"id": k, **v}
for k, v in all_text_units_lookup.items()
2024-11-05 18:36:59 -08:00
if v is not None and v.get("data") is not None and "content" in v["data"]
2024-10-10 15:02:30 +08:00
]
2024-11-11 10:45:22 +08:00
2024-11-05 18:36:59 -08:00
if not all_text_units:
logger.warning("No valid text units found")
return []
2024-11-11 10:45:22 +08:00
2024-10-10 15:02:30 +08:00
all_text_units = sorted(
2024-11-11 10:45:22 +08:00
all_text_units, key=lambda x: (x["order"], -x["relation_counts"])
2024-10-10 15:02:30 +08:00
)
2024-11-11 10:45:22 +08:00
2024-10-10 15:02:30 +08:00
all_text_units = truncate_list_by_token_size(
all_text_units,
key=lambda x: x["data"]["content"],
max_token_size=query_param.max_token_for_text_unit,
)
2024-11-11 10:45:22 +08:00
2024-11-05 18:36:59 -08:00
all_text_units = [t["data"] for t in all_text_units]
2024-10-10 15:02:30 +08:00
return all_text_units
2024-10-10 15:02:30 +08:00
async def _find_most_related_edges_from_entities(
2025-01-07 16:26:12 +08:00
node_datas: list[dict],
query_param: QueryParam,
knowledge_graph_inst: BaseGraphStorage,
2024-10-10 15:02:30 +08:00
):
all_related_edges = await asyncio.gather(
*[knowledge_graph_inst.get_node_edges(dp["entity_name"]) for dp in node_datas]
)
2024-11-14 15:59:37 +08:00
all_edges = []
seen = set()
2024-10-10 15:02:30 +08:00
for this_edges in all_related_edges:
2024-11-14 15:59:37 +08:00
for e in this_edges:
sorted_edge = tuple(sorted(e))
if sorted_edge not in seen:
seen.add(sorted_edge)
all_edges.append(sorted_edge)
2024-10-10 15:02:30 +08:00
all_edges_pack = await asyncio.gather(
*[knowledge_graph_inst.get_edge(e[0], e[1]) for e in all_edges]
)
all_edges_degree = await asyncio.gather(
*[knowledge_graph_inst.edge_degree(e[0], e[1]) for e in all_edges]
)
all_edges_data = [
{"src_tgt": k, "rank": d, **v}
for k, v, d in zip(all_edges, all_edges_pack, all_edges_degree)
if v is not None
]
all_edges_data = sorted(
all_edges_data, key=lambda x: (x["rank"], x["weight"]), reverse=True
)
all_edges_data = truncate_list_by_token_size(
all_edges_data,
key=lambda x: x["description"],
max_token_size=query_param.max_token_for_global_context,
)
return all_edges_data
2024-11-25 13:29:55 +08:00
async def _get_edge_data(
2025-01-07 16:26:12 +08:00
keywords,
knowledge_graph_inst: BaseGraphStorage,
relationships_vdb: BaseVectorStorage,
text_chunks_db: BaseKVStorage[TextChunkSchema],
query_param: QueryParam,
2024-10-10 15:02:30 +08:00
):
results = await relationships_vdb.query(keywords, top_k=query_param.top_k)
2024-10-10 15:02:30 +08:00
if not len(results):
return "", "", ""
2024-10-10 15:02:30 +08:00
edge_datas = await asyncio.gather(
*[knowledge_graph_inst.get_edge(r["src_id"], r["tgt_id"]) for r in results]
)
2024-10-10 15:02:30 +08:00
if not all([n is not None for n in edge_datas]):
logger.warning("Some edges are missing, maybe the storage is damaged")
edge_degree = await asyncio.gather(
*[knowledge_graph_inst.edge_degree(r["src_id"], r["tgt_id"]) for r in results]
)
edge_datas = [
{
"src_id": k["src_id"],
"tgt_id": k["tgt_id"],
"rank": d,
"created_at": k.get("__created_at__", None), # 从 KV 存储中获取时间元数据
**v,
}
2024-10-10 15:02:30 +08:00
for k, v, d in zip(results, edge_datas, edge_degree)
if v is not None
]
edge_datas = sorted(
edge_datas, key=lambda x: (x["rank"], x["weight"]), reverse=True
)
edge_datas = truncate_list_by_token_size(
edge_datas,
key=lambda x: x["description"],
max_token_size=query_param.max_token_for_global_context,
)
use_entities = await _find_most_related_entities_from_relationships(
edge_datas, query_param, knowledge_graph_inst
)
use_text_units = await _find_related_text_unit_from_relationships(
edge_datas, query_param, text_chunks_db, knowledge_graph_inst
)
logger.info(
f"Global query uses {len(use_entities)} entites, {len(edge_datas)} relations, {len(use_text_units)} text units"
)
2024-11-25 13:29:55 +08:00
2024-10-10 15:02:30 +08:00
relations_section_list = [
[
"id",
"source",
"target",
"description",
"keywords",
"weight",
"rank",
"created_at",
]
2024-10-10 15:02:30 +08:00
]
for i, e in enumerate(edge_datas):
created_at = e.get("created_at", "Unknown")
# Convert timestamp to readable format
if isinstance(created_at, (int, float)):
created_at = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(created_at))
2024-10-10 15:02:30 +08:00
relations_section_list.append(
[
i,
e["src_id"],
e["tgt_id"],
e["description"],
e["keywords"],
e["weight"],
e["rank"],
created_at,
2024-10-10 15:02:30 +08:00
]
)
relations_context = list_of_list_to_csv(relations_section_list)
entites_section_list = [["id", "entity", "type", "description", "rank"]]
for i, n in enumerate(use_entities):
entites_section_list.append(
[
i,
n["entity_name"],
n.get("entity_type", "UNKNOWN"),
n.get("description", "UNKNOWN"),
n["rank"],
]
)
entities_context = list_of_list_to_csv(entites_section_list)
text_units_section_list = [["id", "content"]]
for i, t in enumerate(use_text_units):
text_units_section_list.append([i, t["content"]])
text_units_context = list_of_list_to_csv(text_units_section_list)
2024-11-25 13:40:38 +08:00
return entities_context, relations_context, text_units_context
2024-10-10 15:02:30 +08:00
2024-10-10 15:02:30 +08:00
async def _find_most_related_entities_from_relationships(
2025-01-07 16:26:12 +08:00
edge_datas: list[dict],
query_param: QueryParam,
knowledge_graph_inst: BaseGraphStorage,
2024-10-10 15:02:30 +08:00
):
2024-11-14 15:59:37 +08:00
entity_names = []
seen = set()
2024-10-10 15:02:30 +08:00
for e in edge_datas:
2024-11-14 15:59:37 +08:00
if e["src_id"] not in seen:
entity_names.append(e["src_id"])
seen.add(e["src_id"])
if e["tgt_id"] not in seen:
entity_names.append(e["tgt_id"])
seen.add(e["tgt_id"])
2024-10-10 15:02:30 +08:00
node_datas = await asyncio.gather(
*[knowledge_graph_inst.get_node(entity_name) for entity_name in entity_names]
)
node_degrees = await asyncio.gather(
*[knowledge_graph_inst.node_degree(entity_name) for entity_name in entity_names]
)
node_datas = [
{**n, "entity_name": k, "rank": d}
for k, n, d in zip(entity_names, node_datas, node_degrees)
]
node_datas = truncate_list_by_token_size(
node_datas,
key=lambda x: x["description"],
max_token_size=query_param.max_token_for_local_context,
)
return node_datas
2024-10-10 15:02:30 +08:00
async def _find_related_text_unit_from_relationships(
2025-01-07 16:26:12 +08:00
edge_datas: list[dict],
query_param: QueryParam,
text_chunks_db: BaseKVStorage[TextChunkSchema],
knowledge_graph_inst: BaseGraphStorage,
2024-10-10 15:02:30 +08:00
):
text_units = [
split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP])
for dp in edge_datas
]
all_text_units_lookup = {}
for index, unit_list in enumerate(text_units):
for c_id in unit_list:
if c_id not in all_text_units_lookup:
chunk_data = await text_chunks_db.get_by_id(c_id)
# Only store valid data
if chunk_data is not None and "content" in chunk_data:
all_text_units_lookup[c_id] = {
"data": chunk_data,
"order": index,
}
if not all_text_units_lookup:
logger.warning("No valid text chunks found")
return []
all_text_units = [{"id": k, **v} for k, v in all_text_units_lookup.items()]
all_text_units = sorted(all_text_units, key=lambda x: x["order"])
# Ensure all text chunks have content
valid_text_units = [
t for t in all_text_units if t["data"] is not None and "content" in t["data"]
]
if not valid_text_units:
logger.warning("No valid text chunks after filtering")
return []
truncated_text_units = truncate_list_by_token_size(
valid_text_units,
2024-10-10 15:02:30 +08:00
key=lambda x: x["data"]["content"],
max_token_size=query_param.max_token_for_text_unit,
)
all_text_units: list[TextChunkSchema] = [t["data"] for t in truncated_text_units]
2024-10-10 15:02:30 +08:00
return all_text_units
2024-11-25 13:29:55 +08:00
def combine_contexts(entities, relationships, sources):
2024-10-10 15:02:30 +08:00
# Function to extract entities, relationships, and sources from context strings
2024-11-25 13:29:55 +08:00
hl_entities, ll_entities = entities[0], entities[1]
2024-11-25 13:40:38 +08:00
hl_relationships, ll_relationships = relationships[0], relationships[1]
2024-11-25 13:29:55 +08:00
hl_sources, ll_sources = sources[0], sources[1]
2024-10-10 15:02:30 +08:00
# Combine and deduplicate the entities
combined_entities = process_combine_contexts(hl_entities, ll_entities)
2024-11-06 11:18:14 -05:00
2024-10-10 15:02:30 +08:00
# Combine and deduplicate the relationships
2024-11-06 11:18:14 -05:00
combined_relationships = process_combine_contexts(
hl_relationships, ll_relationships
)
2024-10-10 15:02:30 +08:00
# Combine and deduplicate the sources
combined_sources = process_combine_contexts(hl_sources, ll_sources)
2024-11-25 13:29:55 +08:00
return combined_entities, combined_relationships, combined_sources
2024-10-10 15:02:30 +08:00
2024-10-10 15:02:30 +08:00
async def naive_query(
2025-01-07 16:26:12 +08:00
query,
chunks_vdb: BaseVectorStorage,
text_chunks_db: BaseKVStorage[TextChunkSchema],
query_param: QueryParam,
global_config: dict,
hashing_kv: BaseKVStorage = None,
2024-10-10 15:02:30 +08:00
):
# Handle cache
2024-10-10 15:02:30 +08:00
use_model_func = global_config["llm_model_func"]
args_hash = compute_args_hash(query_param.mode, query)
cached_response, quantized, min_val, max_val = await handle_cache(
hashing_kv, args_hash, query, query_param.mode
)
if cached_response is not None:
return cached_response
2024-10-10 15:02:30 +08:00
results = await chunks_vdb.query(query, top_k=query_param.top_k)
if not len(results):
return PROMPTS["fail_response"]
2024-10-10 15:02:30 +08:00
chunks_ids = [r["id"] for r in results]
chunks = await text_chunks_db.get_by_ids(chunks_ids)
# Filter out invalid chunks
valid_chunks = [
chunk for chunk in chunks if chunk is not None and "content" in chunk
]
if not valid_chunks:
logger.warning("No valid chunks found after filtering")
return PROMPTS["fail_response"]
2024-10-10 15:02:30 +08:00
maybe_trun_chunks = truncate_list_by_token_size(
valid_chunks,
2024-10-10 15:02:30 +08:00
key=lambda x: x["content"],
max_token_size=query_param.max_token_for_text_unit,
)
if not maybe_trun_chunks:
logger.warning("No chunks left after truncation")
return PROMPTS["fail_response"]
2024-10-10 15:02:30 +08:00
logger.info(f"Truncate {len(chunks)} to {len(maybe_trun_chunks)} chunks")
2024-11-25 13:29:55 +08:00
section = "\n--New Chunk--\n".join([c["content"] for c in maybe_trun_chunks])
2024-10-10 15:02:30 +08:00
if query_param.only_need_context:
return section
2024-10-10 15:02:30 +08:00
sys_prompt_temp = PROMPTS["naive_rag_response"]
sys_prompt = sys_prompt_temp.format(
content_data=section, response_type=query_param.response_type
)
if query_param.only_need_prompt:
return sys_prompt
2024-10-10 15:02:30 +08:00
response = await use_model_func(
query,
system_prompt=sys_prompt,
)
2024-10-14 19:41:07 +08:00
if len(response) > len(sys_prompt):
response = (
2025-01-07 16:26:12 +08:00
response[len(sys_prompt) :]
.replace(sys_prompt, "")
.replace("user", "")
.replace("model", "")
.replace(query, "")
.replace("<system>", "")
.replace("</system>", "")
.strip()
)
2024-10-10 15:02:30 +08:00
# Save to cache
await save_to_cache(
hashing_kv,
CacheData(
args_hash=args_hash,
content=response,
prompt=query,
quantized=quantized,
min_val=min_val,
max_val=max_val,
mode=query_param.mode,
),
)
2024-11-06 11:18:14 -05:00
return response
async def mix_kg_vector_query(
2025-01-07 16:26:12 +08:00
query,
knowledge_graph_inst: BaseGraphStorage,
entities_vdb: BaseVectorStorage,
relationships_vdb: BaseVectorStorage,
chunks_vdb: BaseVectorStorage,
text_chunks_db: BaseKVStorage[TextChunkSchema],
query_param: QueryParam,
global_config: dict,
hashing_kv: BaseKVStorage = None,
) -> str:
"""
Hybrid retrieval implementation combining knowledge graph and vector search.
This function performs a hybrid search by:
1. Extracting semantic information from knowledge graph
2. Retrieving relevant text chunks through vector similarity
3. Combining both results for comprehensive answer generation
"""
# 1. Cache handling
use_model_func = global_config["llm_model_func"]
args_hash = compute_args_hash("mix", query)
cached_response, quantized, min_val, max_val = await handle_cache(
hashing_kv, args_hash, query, "mix"
)
if cached_response is not None:
return cached_response
# 2. Execute knowledge graph and vector searches in parallel
async def get_kg_context():
try:
# Reuse keyword extraction logic from kg_query
example_number = global_config["addon_params"].get("example_number", None)
if example_number and example_number < len(
2025-01-07 16:26:12 +08:00
PROMPTS["keywords_extraction_examples"]
):
examples = "\n".join(
PROMPTS["keywords_extraction_examples"][: int(example_number)]
)
else:
examples = "\n".join(PROMPTS["keywords_extraction_examples"])
language = global_config["addon_params"].get(
"language", PROMPTS["DEFAULT_LANGUAGE"]
)
# Extract keywords using LLM
kw_prompt = PROMPTS["keywords_extraction"].format(
query=query, examples=examples, language=language
)
result = await use_model_func(kw_prompt, keyword_extraction=True)
match = re.search(r"\{.*\}", result, re.DOTALL)
if not match:
logger.warning(
"No JSON-like structure found in keywords extraction result"
)
return None
result = match.group(0)
keywords_data = json.loads(result)
hl_keywords = keywords_data.get("high_level_keywords", [])
ll_keywords = keywords_data.get("low_level_keywords", [])
if not hl_keywords and not ll_keywords:
logger.warning("Both high-level and low-level keywords are empty")
return None
# Convert keyword lists to strings
ll_keywords_str = ", ".join(ll_keywords) if ll_keywords else ""
hl_keywords_str = ", ".join(hl_keywords) if hl_keywords else ""
# Set query mode based on available keywords
if not ll_keywords_str and not hl_keywords_str:
return None
elif not ll_keywords_str:
query_param.mode = "global"
elif not hl_keywords_str:
query_param.mode = "local"
else:
query_param.mode = "hybrid"
# Build knowledge graph context
context = await _build_query_context(
[ll_keywords_str, hl_keywords_str],
knowledge_graph_inst,
entities_vdb,
relationships_vdb,
text_chunks_db,
query_param,
)
return context
except Exception as e:
logger.error(f"Error in get_kg_context: {str(e)}")
return None
async def get_vector_context():
# Reuse vector search logic from naive_query
try:
# Reduce top_k for vector search in hybrid mode since we have structured information from KG
mix_topk = min(10, query_param.top_k)
results = await chunks_vdb.query(query, top_k=mix_topk)
if not results:
return None
chunks_ids = [r["id"] for r in results]
chunks = await text_chunks_db.get_by_ids(chunks_ids)
valid_chunks = []
for chunk, result in zip(chunks, results):
if chunk is not None and "content" in chunk:
# Merge chunk content and time metadata
chunk_with_time = {
"content": chunk["content"],
"created_at": result.get("created_at", None),
}
valid_chunks.append(chunk_with_time)
if not valid_chunks:
return None
maybe_trun_chunks = truncate_list_by_token_size(
valid_chunks,
key=lambda x: x["content"],
max_token_size=query_param.max_token_for_text_unit,
)
if not maybe_trun_chunks:
return None
# Include time information in content
formatted_chunks = []
for c in maybe_trun_chunks:
chunk_text = c["content"]
if c["created_at"]:
chunk_text = f"[Created at: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(c['created_at']))}]\n{chunk_text}"
formatted_chunks.append(chunk_text)
return "\n--New Chunk--\n".join(formatted_chunks)
except Exception as e:
logger.error(f"Error in get_vector_context: {e}")
return None
# 3. Execute both retrievals in parallel
kg_context, vector_context = await asyncio.gather(
get_kg_context(), get_vector_context()
)
# 4. Merge contexts
if kg_context is None and vector_context is None:
return PROMPTS["fail_response"]
if query_param.only_need_context:
return {"kg_context": kg_context, "vector_context": vector_context}
# 5. Construct hybrid prompt
sys_prompt = PROMPTS["mix_rag_response"].format(
kg_context=kg_context
if kg_context
else "No relevant knowledge graph information found",
vector_context=vector_context
if vector_context
else "No relevant text information found",
response_type=query_param.response_type,
)
if query_param.only_need_prompt:
return sys_prompt
# 6. Generate response
response = await use_model_func(
query,
system_prompt=sys_prompt,
stream=query_param.stream,
)
if isinstance(response, str) and len(response) > len(sys_prompt):
response = (
response.replace(sys_prompt, "")
.replace("user", "")
.replace("model", "")
.replace(query, "")
.replace("<system>", "")
.replace("</system>", "")
.strip()
)
# 7. Save cache
await save_to_cache(
hashing_kv,
CacheData(
args_hash=args_hash,
content=response,
prompt=query,
quantized=quantized,
min_val=min_val,
max_val=max_val,
mode="mix",
),
)
return response