LightRAG/lightrag/api/lightrag_server.py

1882 lines
67 KiB
Python
Raw Normal View History

2025-01-31 23:35:42 +08:00
from fastapi import (
FastAPI,
HTTPException,
File,
UploadFile,
BackgroundTasks,
)
import asyncio
import threading
import os
import json
import re
2025-01-24 13:55:50 +01:00
from fastapi.staticfiles import StaticFiles
import logging
import argparse
2025-02-16 19:13:29 +01:00
from typing import List, Any, Literal, Optional, Dict
2025-02-16 19:24:12 +01:00
from pydantic import BaseModel, Field, field_validator
from lightrag import LightRAG, QueryParam
from lightrag.types import GPTKeywordExtractionFormat
from lightrag.api import __api_version__
from lightrag.utils import EmbeddingFunc
from pathlib import Path
import shutil
import aiofiles
from ascii_colors import trace_exception, ASCIIColors
import sys
2025-01-04 02:23:39 +01:00
from fastapi import Depends, Security
from fastapi.security import APIKeyHeader
from fastapi.middleware.cors import CORSMiddleware
from contextlib import asynccontextmanager
from starlette.status import HTTP_403_FORBIDDEN
2025-01-14 23:08:39 +01:00
import pipmaster as pm
2025-01-17 02:34:29 +01:00
from dotenv import load_dotenv
import configparser
import traceback
from datetime import datetime
from lightrag.utils import logger
from .ollama_api import (
OllamaAPI,
)
from .ollama_api import ollama_server_infos
from ..kg.postgres_impl import (
PostgreSQLDB,
PGKVStorage,
PGVectorStorage,
PGGraphStorage,
PGDocStatusStorage,
)
from ..kg.oracle_impl import (
OracleDB,
OracleKVStorage,
OracleVectorDBStorage,
OracleGraphStorage,
)
from ..kg.tidb_impl import (
TiDB,
TiDBKVStorage,
TiDBVectorDBStorage,
TiDBGraphStorage,
)
2025-01-17 02:34:29 +01:00
2025-02-01 15:22:40 +08:00
# Load environment variables
load_dotenv(override=True)
# Initialize config parser
config = configparser.ConfigParser()
config.read("config.ini")
2025-02-13 04:12:00 +08:00
class DefaultRAGStorageConfig:
KV_STORAGE = "JsonKVStorage"
VECTOR_STORAGE = "NanoVectorDBStorage"
GRAPH_STORAGE = "NetworkXStorage"
DOC_STATUS_STORAGE = "JsonDocStatusStorage"
2025-02-13 04:12:00 +08:00
2025-02-01 15:22:40 +08:00
# Global progress tracker
scan_progress: Dict = {
"is_scanning": False,
"current_file": "",
"indexed_count": 0,
"total_files": 0,
"progress": 0,
}
# Lock for thread-safe operations
progress_lock = threading.Lock()
2025-01-19 08:07:26 +08:00
def estimate_tokens(text: str) -> int:
"""Estimate the number of tokens in text
Chinese characters: approximately 1.5 tokens per character
English characters: approximately 0.25 tokens per character
"""
# Use regex to match Chinese and non-Chinese characters separately
chinese_chars = len(re.findall(r"[\u4e00-\u9fff]", text))
non_chinese_chars = len(re.findall(r"[^\u4e00-\u9fff]", text))
# Calculate estimated token count
tokens = chinese_chars * 1.5 + non_chinese_chars * 0.25
return int(tokens)
2025-02-13 21:01:34 +08:00
2025-01-10 20:30:58 +01:00
def get_default_host(binding_type: str) -> str:
default_hosts = {
"ollama": os.getenv("LLM_BINDING_HOST", "http://localhost:11434"),
"lollms": os.getenv("LLM_BINDING_HOST", "http://localhost:9600"),
"azure_openai": os.getenv("AZURE_OPENAI_ENDPOINT", "https://api.openai.com/v1"),
"openai": os.getenv("LLM_BINDING_HOST", "https://api.openai.com/v1"),
2025-01-10 20:30:58 +01:00
}
2025-01-11 01:37:07 +01:00
return default_hosts.get(
binding_type, os.getenv("LLM_BINDING_HOST", "http://localhost:11434")
2025-01-11 01:37:07 +01:00
) # fallback to ollama if unknown
2025-01-17 01:36:16 +01:00
def get_env_value(env_key: str, default: Any, value_type: type = str) -> Any:
"""
Get value from environment variable with type conversion
2025-01-17 01:36:16 +01:00
Args:
env_key (str): Environment variable key
default (Any): Default value if env variable is not set
value_type (type): Type to convert the value to
2025-01-17 01:36:16 +01:00
Returns:
Any: Converted value from environment or default
"""
value = os.getenv(env_key)
if value is None:
return default
2025-01-17 01:36:16 +01:00
2025-01-17 02:34:29 +01:00
if isinstance(value_type, bool):
2025-01-17 01:36:16 +01:00
return value.lower() in ("true", "1", "yes")
try:
return value_type(value)
except ValueError:
return default
2025-01-17 01:36:16 +01:00
def display_splash_screen(args: argparse.Namespace) -> None:
"""
Display a colorful splash screen showing LightRAG server configuration
2025-01-17 01:36:16 +01:00
Args:
args: Parsed command line arguments
"""
# Banner
ASCIIColors.cyan(f"""
🚀 LightRAG Server v{__api_version__}
Fast, Lightweight RAG Server Implementation
""")
# Server Configuration
ASCIIColors.magenta("\n📡 Server Configuration:")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Host: ", end="")
ASCIIColors.yellow(f"{args.host}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Port: ", end="")
ASCIIColors.yellow(f"{args.port}")
ASCIIColors.white(" ├─ CORS Origins: ", end="")
ASCIIColors.yellow(f"{os.getenv('CORS_ORIGINS', '*')}")
ASCIIColors.white(" ├─ SSL Enabled: ", end="")
ASCIIColors.yellow(f"{args.ssl}")
ASCIIColors.white(" └─ API Key: ", end="")
ASCIIColors.yellow("Set" if args.key else "Not Set")
if args.ssl:
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ SSL Cert: ", end="")
ASCIIColors.yellow(f"{args.ssl_certfile}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" └─ SSL Key: ", end="")
ASCIIColors.yellow(f"{args.ssl_keyfile}")
# Directory Configuration
ASCIIColors.magenta("\n📂 Directory Configuration:")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Working Directory: ", end="")
ASCIIColors.yellow(f"{args.working_dir}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" └─ Input Directory: ", end="")
ASCIIColors.yellow(f"{args.input_dir}")
# LLM Configuration
ASCIIColors.magenta("\n🤖 LLM Configuration:")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Binding: ", end="")
ASCIIColors.yellow(f"{args.llm_binding}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Host: ", end="")
ASCIIColors.yellow(f"{args.llm_binding_host}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" └─ Model: ", end="")
ASCIIColors.yellow(f"{args.llm_model}")
# Embedding Configuration
ASCIIColors.magenta("\n📊 Embedding Configuration:")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Binding: ", end="")
ASCIIColors.yellow(f"{args.embedding_binding}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Host: ", end="")
ASCIIColors.yellow(f"{args.embedding_binding_host}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Model: ", end="")
ASCIIColors.yellow(f"{args.embedding_model}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" └─ Dimensions: ", end="")
ASCIIColors.yellow(f"{args.embedding_dim}")
# RAG Configuration
ASCIIColors.magenta("\n⚙️ RAG Configuration:")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Max Async Operations: ", end="")
ASCIIColors.yellow(f"{args.max_async}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Max Tokens: ", end="")
ASCIIColors.yellow(f"{args.max_tokens}")
ASCIIColors.white(" ├─ Max Embed Tokens: ", end="")
ASCIIColors.yellow(f"{args.max_embed_tokens}")
ASCIIColors.white(" ├─ Chunk Size: ", end="")
ASCIIColors.yellow(f"{args.chunk_size}")
ASCIIColors.white(" ├─ Chunk Overlap Size: ", end="")
ASCIIColors.yellow(f"{args.chunk_overlap_size}")
ASCIIColors.white(" ├─ History Turns: ", end="")
ASCIIColors.yellow(f"{args.history_turns}")
ASCIIColors.white(" ├─ Cosine Threshold: ", end="")
ASCIIColors.yellow(f"{args.cosine_threshold}")
ASCIIColors.white(" └─ Top-K: ", end="")
ASCIIColors.yellow(f"{args.top_k}")
# System Configuration
2025-02-11 14:57:37 +08:00
ASCIIColors.magenta("\n💾 Storage Configuration:")
ASCIIColors.white(" ├─ KV Storage: ", end="")
ASCIIColors.yellow(f"{args.kv_storage}")
ASCIIColors.white(" ├─ Vector Storage: ", end="")
ASCIIColors.yellow(f"{args.vector_storage}")
2025-02-11 14:57:37 +08:00
ASCIIColors.white(" ├─ Graph Storage: ", end="")
ASCIIColors.yellow(f"{args.graph_storage}")
ASCIIColors.white(" └─ Document Status Storage: ", end="")
ASCIIColors.yellow(f"{args.doc_status_storage}")
2025-02-11 14:57:37 +08:00
ASCIIColors.magenta("\n🛠️ System Configuration:")
ASCIIColors.white(" ├─ Ollama Emulating Model: ", end="")
2025-01-28 15:30:36 +01:00
ASCIIColors.yellow(f"{ollama_server_infos.LIGHTRAG_MODEL}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Log Level: ", end="")
ASCIIColors.yellow(f"{args.log_level}")
ASCIIColors.white(" └─ Timeout: ", end="")
ASCIIColors.yellow(f"{args.timeout if args.timeout else 'None (infinite)'}")
# Server Status
ASCIIColors.green("\n✨ Server starting up...\n")
2025-01-17 00:54:24 +01:00
# Server Access Information
protocol = "https" if args.ssl else "http"
if args.host == "0.0.0.0":
ASCIIColors.magenta("\n🌐 Server Access Information:")
ASCIIColors.white(" ├─ Local Access: ", end="")
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}")
ASCIIColors.white(" ├─ Remote Access: ", end="")
ASCIIColors.yellow(f"{protocol}://<your-ip-address>:{args.port}")
ASCIIColors.white(" ├─ API Documentation (local): ", end="")
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/docs")
ASCIIColors.white(" ├─ Alternative Documentation (local): ", end="")
2025-01-17 00:54:24 +01:00
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/redoc")
ASCIIColors.white(" ├─ WebUI (local): ", end="")
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/webui")
ASCIIColors.white(" └─ Graph Viewer (local): ", end="")
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/graph-viewer")
2025-01-17 01:36:16 +01:00
2025-01-17 00:54:24 +01:00
ASCIIColors.yellow("\n📝 Note:")
ASCIIColors.white(""" Since the server is running on 0.0.0.0:
- Use 'localhost' or '127.0.0.1' for local access
- Use your machine's IP address for remote access
- To find your IP address:
Windows: Run 'ipconfig' in terminal
Linux/Mac: Run 'ifconfig' or 'ip addr' in terminal
""")
else:
base_url = f"{protocol}://{args.host}:{args.port}"
ASCIIColors.magenta("\n🌐 Server Access Information:")
ASCIIColors.white(" ├─ Base URL: ", end="")
ASCIIColors.yellow(f"{base_url}")
ASCIIColors.white(" ├─ API Documentation: ", end="")
ASCIIColors.yellow(f"{base_url}/docs")
ASCIIColors.white(" └─ Alternative Documentation: ", end="")
ASCIIColors.yellow(f"{base_url}/redoc")
# Usage Examples
ASCIIColors.magenta("\n📚 Quick Start Guide:")
2025-01-17 01:36:16 +01:00
ASCIIColors.cyan("""
2025-01-17 00:54:24 +01:00
1. Access the Swagger UI:
Open your browser and navigate to the API documentation URL above
2025-01-17 01:36:16 +01:00
2025-01-17 00:54:24 +01:00
2. API Authentication:""")
if args.key:
ASCIIColors.cyan(""" Add the following header to your requests:
X-API-Key: <your-api-key>
""")
else:
ASCIIColors.cyan(" No authentication required\n")
2025-01-17 01:36:16 +01:00
2025-01-17 00:54:24 +01:00
ASCIIColors.cyan(""" 3. Basic Operations:
- POST /upload_document: Upload new documents to RAG
- POST /query: Query your document collection
- GET /collections: List available collections
2025-01-17 01:36:16 +01:00
2025-01-17 00:54:24 +01:00
4. Monitor the server:
- Check server logs for detailed operation information
- Use healthcheck endpoint: GET /health
""")
# Security Notice
if args.key:
ASCIIColors.yellow("\n⚠️ Security Notice:")
ASCIIColors.white(""" API Key authentication is enabled.
Make sure to include the X-API-Key header in all your requests.
""")
2025-01-17 01:36:16 +01:00
ASCIIColors.green("Server is ready to accept connections! 🚀\n")
# Ensure splash output flush to system log
sys.stdout.flush()
def parse_args() -> argparse.Namespace:
"""
Parse command line arguments with environment variable fallback
2025-01-17 01:36:16 +01:00
Returns:
argparse.Namespace: Parsed arguments
"""
2025-01-17 01:36:16 +01:00
parser = argparse.ArgumentParser(
description="LightRAG FastAPI Server with separate working and input directories"
)
parser.add_argument(
"--kv-storage",
2025-02-13 04:12:00 +08:00
default=get_env_value(
"LIGHTRAG_KV_STORAGE", DefaultRAGStorageConfig.KV_STORAGE
),
help=f"KV存储实现 (default: {DefaultRAGStorageConfig.KV_STORAGE})",
)
parser.add_argument(
"--doc-status-storage",
2025-02-13 04:12:00 +08:00
default=get_env_value(
"LIGHTRAG_DOC_STATUS_STORAGE", DefaultRAGStorageConfig.DOC_STATUS_STORAGE
),
help=f"文档状态存储实现 (default: {DefaultRAGStorageConfig.DOC_STATUS_STORAGE})",
)
parser.add_argument(
"--graph-storage",
2025-02-13 04:12:00 +08:00
default=get_env_value(
"LIGHTRAG_GRAPH_STORAGE", DefaultRAGStorageConfig.GRAPH_STORAGE
),
help=f"图存储实现 (default: {DefaultRAGStorageConfig.GRAPH_STORAGE})",
)
parser.add_argument(
"--vector-storage",
2025-02-13 04:12:00 +08:00
default=get_env_value(
"LIGHTRAG_VECTOR_STORAGE", DefaultRAGStorageConfig.VECTOR_STORAGE
),
help=f"向量存储实现 (default: {DefaultRAGStorageConfig.VECTOR_STORAGE})",
)
# Bindings configuration
2025-01-10 20:30:58 +01:00
parser.add_argument(
"--llm-binding",
default=get_env_value("LLM_BINDING", "ollama"),
help="LLM binding to be used. Supported: lollms, ollama, openai (default: from env or ollama)",
2025-01-10 20:30:58 +01:00
)
parser.add_argument(
"--embedding-binding",
default=get_env_value("EMBEDDING_BINDING", "ollama"),
help="Embedding binding to be used. Supported: lollms, ollama, openai (default: from env or ollama)",
2025-01-10 20:30:58 +01:00
)
2025-01-11 01:37:07 +01:00
# Server configuration
parser.add_argument(
"--host",
default=get_env_value("HOST", "0.0.0.0"),
2025-01-17 01:36:16 +01:00
help="Server host (default: from env or 0.0.0.0)",
)
parser.add_argument(
"--port",
type=int,
default=get_env_value("PORT", 9621, int),
2025-01-17 01:36:16 +01:00
help="Server port (default: from env or 9621)",
)
# Directory configuration
parser.add_argument(
"--working-dir",
default=get_env_value("WORKING_DIR", "./rag_storage"),
help="Working directory for RAG storage (default: from env or ./rag_storage)",
)
parser.add_argument(
"--input-dir",
default=get_env_value("INPUT_DIR", "./inputs"),
help="Directory containing input documents (default: from env or ./inputs)",
)
2025-01-10 20:30:58 +01:00
# LLM Model configuration
parser.add_argument(
2025-01-10 20:30:58 +01:00
"--llm-binding-host",
default=get_env_value("LLM_BINDING_HOST", None),
2025-01-26 05:10:57 +08:00
help="LLM server host URL. If not provided, defaults based on llm-binding:\n"
+ "- ollama: http://localhost:11434\n"
+ "- lollms: http://localhost:9600\n"
+ "- openai: https://api.openai.com/v1",
2025-01-10 20:30:58 +01:00
)
2025-01-20 00:26:28 +01:00
default_llm_api_key = get_env_value("LLM_BINDING_API_KEY", None)
2025-01-17 11:18:45 +01:00
parser.add_argument(
"--llm-binding-api-key",
default=default_llm_api_key,
2025-01-20 00:26:28 +01:00
help="llm server API key (default: from env or empty string)",
2025-01-17 11:18:45 +01:00
)
2025-01-10 20:30:58 +01:00
parser.add_argument(
"--llm-model",
default=get_env_value("LLM_MODEL", "mistral-nemo:latest"),
help="LLM model name (default: from env or mistral-nemo:latest)",
)
2025-01-10 20:30:58 +01:00
# Embedding model configuration
parser.add_argument(
"--embedding-binding-host",
default=get_env_value("EMBEDDING_BINDING_HOST", None),
2025-01-26 05:10:57 +08:00
help="Embedding server host URL. If not provided, defaults based on embedding-binding:\n"
+ "- ollama: http://localhost:11434\n"
+ "- lollms: http://localhost:9600\n"
+ "- openai: https://api.openai.com/v1",
2025-01-10 20:30:58 +01:00
)
2025-01-20 00:26:28 +01:00
default_embedding_api_key = get_env_value("EMBEDDING_BINDING_API_KEY", "")
2025-01-17 11:18:45 +01:00
parser.add_argument(
"--embedding-binding-api-key",
default=default_embedding_api_key,
2025-01-20 00:26:28 +01:00
help="embedding server API key (default: from env or empty string)",
2025-01-17 11:18:45 +01:00
)
2025-01-10 20:30:58 +01:00
parser.add_argument(
"--embedding-model",
default=get_env_value("EMBEDDING_MODEL", "bge-m3:latest"),
help="Embedding model name (default: from env or bge-m3:latest)",
)
parser.add_argument(
"--chunk_size",
default=get_env_value("CHUNK_SIZE", 1200),
help="chunk chunk size default 1200",
)
parser.add_argument(
"--chunk_overlap_size",
default=get_env_value("CHUNK_OVERLAP_SIZE", 100),
help="chunk overlap size default 100",
)
2025-01-10 22:17:13 +01:00
def timeout_type(value):
if value is None or value == "None":
return None
return int(value)
2025-01-10 21:39:25 +01:00
parser.add_argument(
"--timeout",
default=get_env_value("TIMEOUT", None, timeout_type),
2025-01-10 22:17:13 +01:00
type=timeout_type,
help="Timeout in seconds (useful when using slow AI). Use None for infinite timeout",
2025-01-10 21:39:25 +01:00
)
# RAG configuration
parser.add_argument(
"--max-async",
type=int,
default=get_env_value("MAX_ASYNC", 4, int),
2025-01-17 01:36:16 +01:00
help="Maximum async operations (default: from env or 4)",
)
parser.add_argument(
"--max-tokens",
type=int,
default=get_env_value("MAX_TOKENS", 32768, int),
help="Maximum token size (default: from env or 32768)",
)
parser.add_argument(
"--embedding-dim",
type=int,
default=get_env_value("EMBEDDING_DIM", 1024, int),
help="Embedding dimensions (default: from env or 1024)",
)
parser.add_argument(
"--max-embed-tokens",
type=int,
default=get_env_value("MAX_EMBED_TOKENS", 8192, int),
help="Maximum embedding token size (default: from env or 8192)",
)
# Logging configuration
parser.add_argument(
"--log-level",
default=get_env_value("LOG_LEVEL", "INFO"),
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Logging level (default: from env or INFO)",
)
2025-01-04 02:23:39 +01:00
parser.add_argument(
"--key",
type=str,
default=get_env_value("LIGHTRAG_API_KEY", None),
2025-01-04 02:23:39 +01:00
help="API key for authentication. This protects lightrag server against unauthorized access",
)
2025-01-10 21:39:25 +01:00
# Optional https parameters
parser.add_argument(
"--ssl",
action="store_true",
default=get_env_value("SSL", False, bool),
2025-01-17 01:36:16 +01:00
help="Enable HTTPS (default: from env or False)",
2025-01-10 21:39:25 +01:00
)
parser.add_argument(
"--ssl-certfile",
default=get_env_value("SSL_CERTFILE", None),
2025-01-11 01:37:07 +01:00
help="Path to SSL certificate file (required if --ssl is enabled)",
2025-01-10 21:39:25 +01:00
)
parser.add_argument(
"--ssl-keyfile",
default=get_env_value("SSL_KEYFILE", None),
2025-01-11 01:37:07 +01:00
help="Path to SSL private key file (required if --ssl is enabled)",
2025-01-10 21:39:25 +01:00
)
2025-01-24 17:04:02 +01:00
parser.add_argument(
2025-01-24 21:01:34 +01:00
"--auto-scan-at-startup",
action="store_true",
2025-01-24 17:04:02 +01:00
default=False,
2025-01-24 21:01:34 +01:00
help="Enable automatic scanning when the program starts",
2025-01-24 17:04:02 +01:00
)
parser.add_argument(
"--history-turns",
type=int,
2025-01-26 05:19:51 +08:00
default=get_env_value("HISTORY_TURNS", 3, int),
help="Number of conversation history turns to include (default: from env or 3)",
)
# Search parameters
parser.add_argument(
"--top-k",
type=int,
default=get_env_value("TOP_K", 60, int),
help="Number of most similar results to return (default: from env or 60)",
)
parser.add_argument(
"--cosine-threshold",
type=float,
default=get_env_value("COSINE_THRESHOLD", 0.2, float),
help="Cosine similarity threshold (default: from env or 0.4)",
)
# Ollama model name
2025-01-28 15:03:26 +01:00
parser.add_argument(
"--simulated-model-name",
2025-01-28 15:32:41 +01:00
type=str,
2025-01-28 18:20:45 +01:00
default=get_env_value(
"SIMULATED_MODEL_NAME", ollama_server_infos.LIGHTRAG_MODEL
),
2025-01-28 15:03:26 +01:00
help="Number of conversation history turns to include (default: from env or 3)",
)
# Namespace
parser.add_argument(
"--namespace-prefix",
type=str,
2025-02-07 23:13:28 +08:00
default=get_env_value("NAMESPACE_PREFIX", ""),
help="Prefix of the namespace",
)
args = parser.parse_args()
# conver relative path to absolute path
args.working_dir = os.path.abspath(args.working_dir)
args.input_dir = os.path.abspath(args.input_dir)
2025-01-28 15:30:36 +01:00
ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name
2025-01-28 15:03:26 +01:00
return args
class DocumentManager:
"""Handles document operations and tracking"""
2025-01-14 23:11:23 +01:00
def __init__(
self,
input_dir: str,
supported_extensions: tuple = (
".txt",
".md",
".pdf",
".docx",
".pptx",
".xlsx",
),
2025-01-14 23:11:23 +01:00
):
self.input_dir = Path(input_dir)
self.supported_extensions = supported_extensions
self.indexed_files = set()
# Create input directory if it doesn't exist
self.input_dir.mkdir(parents=True, exist_ok=True)
def scan_directory_for_new_files(self) -> List[Path]:
"""Scan input directory for new files"""
new_files = []
for ext in self.supported_extensions:
logger.info(f"Scanning for {ext} files in {self.input_dir}")
for file_path in self.input_dir.rglob(f"*{ext}"):
if file_path not in self.indexed_files:
new_files.append(file_path)
return new_files
def scan_directory(self) -> List[Path]:
"""Scan input directory for new files"""
new_files = []
for ext in self.supported_extensions:
for file_path in self.input_dir.rglob(f"*{ext}"):
new_files.append(file_path)
return new_files
def mark_as_indexed(self, file_path: Path):
"""Mark a file as indexed"""
self.indexed_files.add(file_path)
def is_supported_file(self, filename: str) -> bool:
"""Check if file type is supported"""
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
class QueryRequest(BaseModel):
2025-02-16 19:42:09 +01:00
query: str = Field(
min_length=1,
description="The query text",
)
2025-02-16 19:42:09 +01:00
mode: Literal["local", "global", "hybrid", "naive", "mix"] = Field(
default="hybrid",
description="Query mode",
)
2025-02-16 19:42:09 +01:00
only_need_context: Optional[bool] = Field(
default=None,
description="If True, only returns the retrieved context without generating a response.",
)
2025-02-16 19:42:09 +01:00
only_need_prompt: Optional[bool] = Field(
default=None,
description="If True, only returns the generated prompt without producing a response.",
)
2025-02-16 19:42:09 +01:00
response_type: Optional[str] = Field(
min_length=1,
default=None,
description="Defines the response format. Examples: 'Multiple Paragraphs', 'Single Paragraph', 'Bullet Points'.",
)
2025-02-16 19:42:09 +01:00
top_k: Optional[int] = Field(
gt=1,
default=None,
description="Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode.",
)
2025-02-16 19:42:09 +01:00
max_token_for_text_unit: Optional[int] = Field(
gt=1,
default=None,
description="Maximum number of tokens allowed for each retrieved text chunk.",
)
2025-02-16 19:42:09 +01:00
max_token_for_global_context: Optional[int] = Field(
gt=1,
default=None,
description="Maximum number of tokens allocated for relationship descriptions in global retrieval.",
)
2025-02-16 19:42:09 +01:00
max_token_for_local_context: Optional[int] = Field(
gt=1,
default=None,
description="Maximum number of tokens allocated for entity descriptions in local retrieval.",
)
2025-02-16 19:42:09 +01:00
hl_keywords: Optional[List[str]] = Field(
min_length=1,
default=None,
description="List of high-level keywords to prioritize in retrieval.",
)
2025-02-16 19:42:09 +01:00
ll_keywords: Optional[List[str]] = Field(
min_length=1,
default=None,
description="List of low-level keywords to refine retrieval focus.",
)
2025-02-16 19:34:27 +01:00
conversation_history: Optional[List[dict[str, Any]]] = Field(
2025-02-16 19:42:09 +01:00
min_length=1,
default=None,
description="Stores past conversation history to maintain context. Format: [{'role': 'user/assistant', 'content': 'message'}].",
2025-02-16 19:34:27 +01:00
)
2025-02-16 19:42:09 +01:00
history_turns: Optional[int] = Field(
gt=1,
default=None,
description="Number of complete conversation turns (user-assistant pairs) to consider in the response context.",
)
@field_validator("query", mode="after")
@classmethod
def query_strip_after(cls, query: str) -> str:
return query.strip()
@field_validator("hl_keywords", mode="after")
@classmethod
def hl_keywords_strip_after(cls, hl_keywords: List[str] | None) -> List[str] | None:
if hl_keywords is None:
return None
return [keyword.strip() for keyword in hl_keywords]
@field_validator("ll_keywords", mode="after")
@classmethod
def ll_keywords_strip_after(cls, ll_keywords: List[str] | None) -> List[str] | None:
if ll_keywords is None:
return None
return [keyword.strip() for keyword in ll_keywords]
@field_validator("conversation_history", mode="after")
@classmethod
def conversation_history_role_check(
cls, conversation_history: List[dict[str, Any]] | None
) -> List[dict[str, Any]] | None:
if conversation_history is None:
return None
for msg in conversation_history:
if "role" not in msg or msg["role"] not in {"user", "assistant"}:
raise ValueError(
"Each message must have a 'role' key with value 'user' or 'assistant'."
)
return conversation_history
2025-02-16 20:03:52 +01:00
def to_query_params(self, is_stream: bool) -> QueryParam:
"""Converts a QueryRequest instance into a QueryParam instance."""
# Use Pydantic's `.model_dump(exclude_none=True)` to remove None values automatically
request_data = self.model_dump(exclude_none=True, exclude={"query"})
# Ensure `mode` and `stream` are set explicitly
2025-02-16 20:10:28 +01:00
param = QueryParam(**request_data)
param.stream = is_stream
return param
2025-02-16 20:03:52 +01:00
class QueryResponse(BaseModel):
2025-02-16 19:42:09 +01:00
response: str = Field(
description="The generated response",
)
class InsertTextRequest(BaseModel):
2025-02-16 19:42:09 +01:00
text: str = Field(
min_length=1,
description="The text to insert",
)
2025-02-16 19:34:27 +01:00
@field_validator("text", mode="after")
2025-02-16 19:24:12 +01:00
@classmethod
2025-02-16 19:34:27 +01:00
def strip_after(cls, text: str) -> str:
return text.strip()
2025-02-16 19:13:29 +01:00
class InsertTextsRequest(BaseModel):
2025-02-16 19:42:09 +01:00
texts: list[str] = Field(
min_length=1,
description="The texts to insert",
)
2025-02-16 19:34:27 +01:00
@field_validator("texts", mode="after")
2025-02-16 19:24:12 +01:00
@classmethod
2025-02-16 19:34:27 +01:00
def strip_after(cls, texts: list[str]) -> list[str]:
return [text.strip() for text in texts]
2025-02-16 19:13:29 +01:00
class InsertResponse(BaseModel):
2025-02-16 19:44:25 +01:00
status: str = Field(description="Status of the operation")
message: str = Field(description="Message describing the operation result")
2025-01-04 02:23:39 +01:00
def get_api_key_dependency(api_key: Optional[str]):
if not api_key:
# If no API key is configured, return a dummy dependency that always succeeds
async def no_auth():
return None
2025-01-04 02:23:39 +01:00
return no_auth
2025-01-04 02:23:39 +01:00
# If API key is configured, use proper authentication
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
2025-01-04 02:23:39 +01:00
async def api_key_auth(
api_key_header_value: Optional[str] = Security(api_key_header),
):
if not api_key_header_value:
raise HTTPException(
2025-01-04 02:23:39 +01:00
status_code=HTTP_403_FORBIDDEN, detail="API Key required"
)
if api_key_header_value != api_key:
raise HTTPException(
2025-01-04 02:23:39 +01:00
status_code=HTTP_403_FORBIDDEN, detail="Invalid API Key"
)
return api_key_header_value
2025-01-04 02:23:39 +01:00
return api_key_auth
# Global configuration
global_top_k = 60 # default value
temp_prefix = "__tmp_" # prefix for temporary files
2025-02-13 14:07:36 +08:00
def create_app(args):
global global_top_k
global_top_k = args.top_k # save top_k from args
2025-02-13 14:07:36 +08:00
# Verify that bindings are correctly setup
if args.llm_binding not in [
"lollms",
"ollama",
"openai",
"openai-ollama",
"azure_openai",
]:
2025-01-10 20:30:58 +01:00
raise Exception("llm binding not supported")
if args.embedding_binding not in ["lollms", "ollama", "openai", "azure_openai"]:
2025-01-10 20:30:58 +01:00
raise Exception("embedding binding not supported")
# Set default hosts if not provided
if args.llm_binding_host is None:
args.llm_binding_host = get_default_host(args.llm_binding)
2025-01-26 05:10:57 +08:00
if args.embedding_binding_host is None:
args.embedding_binding_host = get_default_host(args.embedding_binding)
2025-01-11 01:35:49 +01:00
# Add SSL validation
if args.ssl:
if not args.ssl_certfile or not args.ssl_keyfile:
2025-01-11 01:37:07 +01:00
raise Exception(
"SSL certificate and key files must be provided when SSL is enabled"
)
2025-01-11 01:35:49 +01:00
if not os.path.exists(args.ssl_certfile):
raise Exception(f"SSL certificate file not found: {args.ssl_certfile}")
if not os.path.exists(args.ssl_keyfile):
raise Exception(f"SSL key file not found: {args.ssl_keyfile}")
2025-01-11 01:37:07 +01:00
# Setup logging
logging.basicConfig(
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
)
# Check if API key is provided either through env var or args
api_key = os.getenv("LIGHTRAG_API_KEY") or args.key
2025-01-04 02:23:39 +01:00
# Initialize document manager
doc_manager = DocumentManager(args.input_dir)
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Lifespan context manager for startup and shutdown events"""
# Initialize database connections
postgres_db = None
oracle_db = None
tidb_db = None
# Store background tasks
app.state.background_tasks = set()
try:
# Check if PostgreSQL is needed
if any(
isinstance(
storage_instance,
(PGKVStorage, PGVectorStorage, PGGraphStorage, PGDocStatusStorage),
)
for _, storage_instance in storage_instances
):
postgres_db = PostgreSQLDB(_get_postgres_config())
await postgres_db.initdb()
await postgres_db.check_tables()
for storage_name, storage_instance in storage_instances:
if isinstance(
storage_instance,
2025-02-13 04:12:00 +08:00
(
PGKVStorage,
PGVectorStorage,
PGGraphStorage,
PGDocStatusStorage,
),
):
storage_instance.db = postgres_db
logger.info(f"Injected postgres_db to {storage_name}")
# Check if Oracle is needed
if any(
isinstance(
storage_instance,
(OracleKVStorage, OracleVectorDBStorage, OracleGraphStorage),
)
for _, storage_instance in storage_instances
):
oracle_db = OracleDB(_get_oracle_config())
await oracle_db.check_tables()
for storage_name, storage_instance in storage_instances:
if isinstance(
storage_instance,
(OracleKVStorage, OracleVectorDBStorage, OracleGraphStorage),
):
storage_instance.db = oracle_db
logger.info(f"Injected oracle_db to {storage_name}")
# Check if TiDB is needed
if any(
isinstance(
storage_instance,
(TiDBKVStorage, TiDBVectorDBStorage, TiDBGraphStorage),
)
for _, storage_instance in storage_instances
):
tidb_db = TiDB(_get_tidb_config())
await tidb_db.check_tables()
for storage_name, storage_instance in storage_instances:
if isinstance(
storage_instance,
(TiDBKVStorage, TiDBVectorDBStorage, TiDBGraphStorage),
):
storage_instance.db = tidb_db
logger.info(f"Injected tidb_db to {storage_name}")
# Auto scan documents if enabled
if args.auto_scan_at_startup:
# Start scanning in background
with progress_lock:
if not scan_progress["is_scanning"]:
scan_progress["is_scanning"] = True
scan_progress["indexed_count"] = 0
scan_progress["progress"] = 0
# Create background task
task = asyncio.create_task(run_scanning_process())
app.state.background_tasks.add(task)
task.add_done_callback(app.state.background_tasks.discard)
2025-02-14 01:14:12 +08:00
ASCIIColors.info(
f"Started background scanning of documents from {args.input_dir}"
)
else:
2025-02-14 01:14:12 +08:00
ASCIIColors.info(
"Skip document scanning(anohter scanning is active)"
)
yield
finally:
# Cleanup database connections
if postgres_db and hasattr(postgres_db, "pool"):
await postgres_db.pool.close()
logger.info("Closed PostgreSQL connection pool")
2025-02-13 04:12:00 +08:00
if oracle_db and hasattr(oracle_db, "pool"):
await oracle_db.pool.close()
logger.info("Closed Oracle connection pool")
2025-02-13 04:12:00 +08:00
if tidb_db and hasattr(tidb_db, "pool"):
await tidb_db.pool.close()
logger.info("Closed TiDB connection pool")
# Initialize FastAPI
app = FastAPI(
title="LightRAG API",
2025-01-04 02:23:39 +01:00
description="API for querying text using LightRAG with separate storage and input directories"
+ "(With authentication)"
if api_key
else "",
version=__api_version__,
2025-01-04 02:23:39 +01:00
openapi_tags=[{"name": "api"}],
2025-01-21 01:03:37 +08:00
lifespan=lifespan,
)
2025-01-04 02:23:39 +01:00
def get_cors_origins():
"""Get allowed origins from environment variable
Returns a list of allowed origins, defaults to ["*"] if not set
"""
origins_str = os.getenv("CORS_ORIGINS", "*")
if origins_str == "*":
return ["*"]
return [origin.strip() for origin in origins_str.split(",")]
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=get_cors_origins(),
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Database configuration functions
def _get_postgres_config():
return {
"host": os.environ.get(
"POSTGRES_HOST",
config.get("postgres", "host", fallback="localhost"),
),
"port": os.environ.get(
"POSTGRES_PORT", config.get("postgres", "port", fallback=5432)
),
"user": os.environ.get(
"POSTGRES_USER", config.get("postgres", "user", fallback=None)
),
"password": os.environ.get(
"POSTGRES_PASSWORD",
config.get("postgres", "password", fallback=None),
),
"database": os.environ.get(
"POSTGRES_DATABASE",
config.get("postgres", "database", fallback=None),
),
"workspace": os.environ.get(
"POSTGRES_WORKSPACE",
config.get("postgres", "workspace", fallback="default"),
),
}
def _get_oracle_config():
return {
"user": os.environ.get(
"ORACLE_USER",
config.get("oracle", "user", fallback=None),
),
"password": os.environ.get(
"ORACLE_PASSWORD",
config.get("oracle", "password", fallback=None),
),
"dsn": os.environ.get(
"ORACLE_DSN",
config.get("oracle", "dsn", fallback=None),
),
"config_dir": os.environ.get(
"ORACLE_CONFIG_DIR",
config.get("oracle", "config_dir", fallback=None),
),
"wallet_location": os.environ.get(
"ORACLE_WALLET_LOCATION",
config.get("oracle", "wallet_location", fallback=None),
),
"wallet_password": os.environ.get(
"ORACLE_WALLET_PASSWORD",
config.get("oracle", "wallet_password", fallback=None),
),
"workspace": os.environ.get(
"ORACLE_WORKSPACE",
config.get("oracle", "workspace", fallback="default"),
),
}
def _get_tidb_config():
return {
"host": os.environ.get(
"TIDB_HOST",
config.get("tidb", "host", fallback="localhost"),
),
"port": os.environ.get(
"TIDB_PORT", config.get("tidb", "port", fallback=4000)
),
"user": os.environ.get(
"TIDB_USER",
config.get("tidb", "user", fallback=None),
),
"password": os.environ.get(
"TIDB_PASSWORD",
config.get("tidb", "password", fallback=None),
),
"database": os.environ.get(
"TIDB_DATABASE",
config.get("tidb", "database", fallback=None),
),
"workspace": os.environ.get(
"TIDB_WORKSPACE",
config.get("tidb", "workspace", fallback="default"),
),
}
# Create the optional API key dependency
optional_api_key = get_api_key_dependency(api_key)
# Create working directory if it doesn't exist
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
if args.llm_binding == "lollms" or args.embedding_binding == "lollms":
from lightrag.llm.lollms import lollms_model_complete, lollms_embed
if args.llm_binding == "ollama" or args.embedding_binding == "ollama":
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
if args.llm_binding == "openai" or args.embedding_binding == "openai":
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
2025-01-25 16:57:47 +08:00
if args.llm_binding == "azure_openai" or args.embedding_binding == "azure_openai":
from lightrag.llm.azure_openai import (
azure_openai_complete_if_cache,
azure_openai_embed,
)
if args.llm_binding_host == "openai-ollama" or args.embedding_binding == "ollama":
2025-01-26 09:13:11 +08:00
from lightrag.llm.openai import openai_complete_if_cache
from lightrag.llm.ollama import ollama_embed
async def openai_alike_model_complete(
2025-01-19 08:07:26 +08:00
prompt,
system_prompt=None,
history_messages=None,
2025-01-19 08:07:26 +08:00
keyword_extraction=False,
**kwargs,
) -> str:
keyword_extraction = kwargs.pop("keyword_extraction", None)
if keyword_extraction:
kwargs["response_format"] = GPTKeywordExtractionFormat
if history_messages is None:
history_messages = []
return await openai_complete_if_cache(
args.llm_model,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
base_url=args.llm_binding_host,
api_key=args.llm_binding_api_key,
**kwargs,
)
async def azure_openai_model_complete(
2025-01-19 08:07:26 +08:00
prompt,
system_prompt=None,
history_messages=None,
2025-01-19 08:07:26 +08:00
keyword_extraction=False,
**kwargs,
) -> str:
keyword_extraction = kwargs.pop("keyword_extraction", None)
if keyword_extraction:
kwargs["response_format"] = GPTKeywordExtractionFormat
if history_messages is None:
history_messages = []
return await azure_openai_complete_if_cache(
args.llm_model,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
base_url=args.llm_binding_host,
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version=os.getenv("AZURE_OPENAI_API_VERSION", "2024-08-01-preview"),
**kwargs,
)
embedding_func = EmbeddingFunc(
embedding_dim=args.embedding_dim,
max_token_size=args.max_embed_tokens,
func=lambda texts: lollms_embed(
texts,
embed_model=args.embedding_model,
host=args.embedding_binding_host,
2025-01-20 00:26:28 +01:00
api_key=args.embedding_binding_api_key,
)
if args.embedding_binding == "lollms"
else ollama_embed(
texts,
embed_model=args.embedding_model,
host=args.embedding_binding_host,
2025-01-20 00:26:28 +01:00
api_key=args.embedding_binding_api_key,
)
if args.embedding_binding == "ollama"
else azure_openai_embed(
texts,
model=args.embedding_model, # no host is used for openai,
2025-01-20 00:26:28 +01:00
api_key=args.embedding_binding_api_key,
)
if args.embedding_binding == "azure_openai"
else openai_embed(
texts,
2025-02-14 00:09:32 +01:00
model=args.embedding_model,
base_url=args.embedding_binding_host,
2025-01-20 00:26:28 +01:00
api_key=args.embedding_binding_api_key,
),
)
# Initialize RAG
if args.llm_binding in ["lollms", "ollama", "openai-ollama"]:
rag = LightRAG(
working_dir=args.working_dir,
llm_model_func=lollms_model_complete
2025-01-11 01:37:07 +01:00
if args.llm_binding == "lollms"
else ollama_model_complete
if args.llm_binding == "ollama"
else openai_alike_model_complete,
llm_model_name=args.llm_model,
llm_model_max_async=args.max_async,
llm_model_max_token_size=args.max_tokens,
chunk_token_size=int(args.chunk_size),
chunk_overlap_token_size=int(args.chunk_overlap_size),
llm_model_kwargs={
"host": args.llm_binding_host,
"timeout": args.timeout,
"options": {"num_ctx": args.max_tokens},
2025-01-20 00:26:28 +01:00
"api_key": args.llm_binding_api_key,
}
if args.llm_binding == "lollms" or args.llm_binding == "ollama"
else {},
embedding_func=embedding_func,
kv_storage=args.kv_storage,
graph_storage=args.graph_storage,
vector_storage=args.vector_storage,
doc_status_storage=args.doc_status_storage,
vector_db_storage_cls_kwargs={
"cosine_better_than_threshold": args.cosine_threshold
},
enable_llm_cache_for_entity_extract=False, # set to True for debuging to reduce llm fee
embedding_cache_config={
"enabled": True,
"similarity_threshold": 0.95,
"use_llm_check": False,
},
log_level=args.log_level,
namespace_prefix=args.namespace_prefix,
2025-01-19 08:07:26 +08:00
)
else:
rag = LightRAG(
working_dir=args.working_dir,
llm_model_func=azure_openai_model_complete
2025-01-11 01:37:07 +01:00
if args.llm_binding == "azure_openai"
else openai_alike_model_complete,
chunk_token_size=int(args.chunk_size),
chunk_overlap_token_size=int(args.chunk_overlap_size),
llm_model_kwargs={
"timeout": args.timeout,
},
llm_model_name=args.llm_model,
llm_model_max_async=args.max_async,
llm_model_max_token_size=args.max_tokens,
embedding_func=embedding_func,
kv_storage=args.kv_storage,
graph_storage=args.graph_storage,
vector_storage=args.vector_storage,
doc_status_storage=args.doc_status_storage,
vector_db_storage_cls_kwargs={
"cosine_better_than_threshold": args.cosine_threshold
},
enable_llm_cache_for_entity_extract=False, # set to True for debuging to reduce llm fee
embedding_cache_config={
"enabled": True,
"similarity_threshold": 0.95,
"use_llm_check": False,
},
log_level=args.log_level,
namespace_prefix=args.namespace_prefix,
)
# Collect all storage instances
storage_instances = [
("full_docs", rag.full_docs),
("text_chunks", rag.text_chunks),
("chunk_entity_relation_graph", rag.chunk_entity_relation_graph),
("entities_vdb", rag.entities_vdb),
("relationships_vdb", rag.relationships_vdb),
("chunks_vdb", rag.chunks_vdb),
("doc_status", rag.doc_status),
("llm_response_cache", rag.llm_response_cache),
]
async def pipeline_enqueue_file(file_path: Path) -> bool:
"""Add a file to the queue for processing
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Args:
file_path: Path to the saved file
Returns:
bool: True if the file was successfully enqueued, False otherwise
2025-01-14 23:08:39 +01:00
"""
try:
content = ""
ext = file_path.suffix.lower()
2025-02-01 01:15:06 +01:00
file = None
async with aiofiles.open(file_path, "rb") as f:
file = await f.read()
2025-02-14 02:32:33 +08:00
# Process based on file type
match ext:
case ".txt" | ".md":
content = file.decode("utf-8")
case ".pdf":
if not pm.is_installed("pypdf2"):
pm.install("pypdf2")
from PyPDF2 import PdfReader
from io import BytesIO
pdf_file = BytesIO(file)
reader = PdfReader(pdf_file)
for page in reader.pages:
content += page.extract_text() + "\n"
case ".docx":
if not pm.is_installed("docx"):
pm.install("docx")
from docx import Document
from io import BytesIO
docx_content = await file.read()
docx_file = BytesIO(docx_content)
doc = Document(docx_file)
content = "\n".join(
[paragraph.text for paragraph in doc.paragraphs]
)
case ".pptx":
if not pm.is_installed("pptx"):
pm.install("pptx")
from pptx import Presentation # type: ignore
from io import BytesIO
pptx_content = await file.read()
pptx_file = BytesIO(pptx_content)
prs = Presentation(pptx_file)
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
content += shape.text + "\n"
case _:
logging.error(
f"Unsupported file type: {file_path.name} (extension {ext})"
)
return False
# Insert into the RAG queue
if content:
await rag.apipeline_enqueue_documents(content)
logging.info(
f"Successfully processed and enqueued file: {file_path.name}"
)
return True
else:
logging.error(
f"No content could be extracted from file: {file_path.name}"
)
2025-02-14 02:32:33 +08:00
except Exception as e:
logging.error(
f"Error processing or enqueueing file {file_path.name}: {str(e)}"
)
logging.error(traceback.format_exc())
finally:
if file_path.name.startswith(temp_prefix):
# Clean up the temporary file after indexing
try:
file_path.unlink()
except Exception as e:
logging.error(f"Error deleting file {file_path}: {str(e)}")
return False
async def pipeline_index_file(file_path: Path):
"""Index a file
2025-01-14 23:11:23 +01:00
Args:
file_path: Path to the saved file
"""
try:
if await pipeline_enqueue_file(file_path):
await rag.apipeline_process_enqueue_documents()
except Exception as e:
logging.error(f"Error indexing file {file_path.name}: {str(e)}")
logging.error(traceback.format_exc())
async def pipeline_index_files(file_paths: List[Path]):
2025-02-16 01:10:43 +08:00
"""Index multiple files concurrently
2025-01-14 23:08:39 +01:00
Args:
file_paths: Paths to the files to index
"""
2025-02-16 01:10:43 +08:00
if not file_paths:
return
try:
enqueued = False
if len(file_paths) == 1:
enqueued = await pipeline_enqueue_file(file_paths[0])
else:
tasks = [pipeline_enqueue_file(path) for path in file_paths]
enqueued = any(await asyncio.gather(*tasks))
if enqueued:
await rag.apipeline_process_enqueue_documents()
except Exception as e:
logging.error(f"Error indexing files: {str(e)}")
logging.error(traceback.format_exc())
async def pipeline_index_texts(texts: List[str]):
"""Index a list of texts
Args:
texts: The texts to index
"""
if not texts:
return
await rag.apipeline_enqueue_documents(texts)
await rag.apipeline_process_enqueue_documents()
2025-01-17 01:36:16 +01:00
async def save_temp_file(file: UploadFile = File(...)) -> Path:
"""Save the uploaded file to a temporary location
2025-01-31 23:35:42 +08:00
Args:
file: The uploaded file
2025-01-31 23:35:42 +08:00
Returns:
Path: The path to the saved file
"""
# Generate unique filename to avoid conflicts
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_filename = f"{temp_prefix}{timestamp}_{file.filename}"
2025-01-31 23:35:42 +08:00
# Create a temporary file to save the uploaded content
temp_path = doc_manager.input_dir / "temp" / unique_filename
temp_path.parent.mkdir(exist_ok=True)
2025-01-31 23:35:42 +08:00
# Save the file
with open(temp_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
return temp_path
2025-01-31 23:35:42 +08:00
2025-01-31 11:19:12 +01:00
async def run_scanning_process():
"""Background task to scan and index documents"""
global scan_progress
2025-01-31 23:35:42 +08:00
try:
new_files = doc_manager.scan_directory_for_new_files()
scan_progress["total_files"] = len(new_files)
2025-01-31 23:35:42 +08:00
logger.info(f"Found {len(new_files)} new files to index.")
for file_path in new_files:
try:
with progress_lock:
scan_progress["current_file"] = os.path.basename(file_path)
2025-01-31 23:35:42 +08:00
await pipeline_index_file(file_path)
2025-01-31 23:35:42 +08:00
with progress_lock:
scan_progress["indexed_count"] += 1
2025-01-30 23:29:21 +01:00
scan_progress["progress"] = (
scan_progress["indexed_count"]
/ scan_progress["total_files"]
) * 100
2025-01-31 23:35:42 +08:00
except Exception as e:
logging.error(f"Error indexing file {file_path}: {str(e)}")
2025-01-31 23:35:42 +08:00
except Exception as e:
2025-01-31 11:19:12 +01:00
logging.error(f"Error during scanning process: {str(e)}")
finally:
with progress_lock:
scan_progress["is_scanning"] = False
@app.post("/documents/scan", dependencies=[Depends(optional_api_key)])
async def scan_for_new_documents(background_tasks: BackgroundTasks):
"""Trigger the scanning process"""
global scan_progress
with progress_lock:
if scan_progress["is_scanning"]:
return {"status": "already_scanning"}
scan_progress["is_scanning"] = True
scan_progress["indexed_count"] = 0
scan_progress["progress"] = 0
# Start the scanning process in the background
background_tasks.add_task(run_scanning_process)
return {"status": "scanning_started"}
@app.get("/documents/scan-progress")
async def get_scan_progress():
"""Get the current scanning progress"""
with progress_lock:
return scan_progress
@app.post("/documents/upload", dependencies=[Depends(optional_api_key)])
async def upload_to_input_dir(
background_tasks: BackgroundTasks, file: UploadFile = File(...)
):
"""
Endpoint for uploading a file to the input directory and indexing it.
2025-01-24 21:01:34 +01:00
This API endpoint accepts a file through an HTTP POST request, checks if the
uploaded file is of a supported type, saves it in the specified input directory,
indexes it for retrieval, and returns a success status with relevant details.
2025-01-24 21:01:34 +01:00
Parameters:
background_tasks: FastAPI BackgroundTasks for async processing
file (UploadFile): The file to be uploaded. It must have an allowed extension as per
`doc_manager.supported_extensions`.
2025-01-24 21:01:34 +01:00
Returns:
2025-01-24 21:01:34 +01:00
dict: A dictionary containing the upload status ("success"),
a message detailing the operation result, and
the total number of indexed documents.
2025-01-24 21:01:34 +01:00
Raises:
HTTPException: If the file type is not supported, it raises a 400 Bad Request error.
If any other exception occurs during the file handling or indexing,
it raises a 500 Internal Server Error with details about the exception.
2025-01-24 21:01:34 +01:00
"""
try:
if not doc_manager.is_supported_file(file.filename):
raise HTTPException(
status_code=400,
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
)
file_path = doc_manager.input_dir / file.filename
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Add to background tasks
background_tasks.add_task(pipeline_index_file, file_path)
return InsertResponse(
status="success",
message=f"File '{file.filename}' uploaded successfully. Processing will continue in background.",
)
except Exception as e:
logging.error(f"Error /documents/upload: {file.filename}: {str(e)}")
logging.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
2025-01-04 02:23:39 +01:00
@app.post(
"/documents/text",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_text(
request: InsertTextRequest, background_tasks: BackgroundTasks
):
"""
Insert text into the Retrieval-Augmented Generation (RAG) system.
This endpoint allows you to insert text data into the RAG system for later retrieval and use in generating responses.
Args:
request (InsertTextRequest): The request body containing the text to be inserted.
background_tasks: FastAPI BackgroundTasks for async processing
Returns:
InsertResponse: A response object containing the status of the operation, a message, and the number of documents inserted.
2025-01-24 21:01:34 +01:00
"""
try:
background_tasks.add_task(pipeline_index_texts, [request.text])
return InsertResponse(
status="success",
message="Text successfully received. Processing will continue in background.",
)
except Exception as e:
logging.error(f"Error /documents/text: {str(e)}")
logging.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
2025-01-14 23:11:23 +01:00
2025-02-16 19:07:06 +01:00
@app.post(
"/documents/texts",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_texts(
request: InsertTextsRequest, background_tasks: BackgroundTasks
):
"""
Insert texts into the Retrieval-Augmented Generation (RAG) system.
This endpoint allows you to insert text data into the RAG system for later retrieval and use in generating responses.
Args:
request (InsertTextsRequest): The request body containing the text to be inserted.
background_tasks: FastAPI BackgroundTasks for async processing
Returns:
InsertResponse: A response object containing the status of the operation, a message, and the number of documents inserted.
"""
try:
background_tasks.add_task(pipeline_index_texts, request.texts)
return InsertResponse(
status="success",
message="Text successfully received. Processing will continue in background.",
)
except Exception as e:
logging.error(f"Error /documents/text: {str(e)}")
logging.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
2025-02-16 19:13:29 +01:00
2025-01-04 02:23:39 +01:00
@app.post(
"/documents/file",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_file(
background_tasks: BackgroundTasks, file: UploadFile = File(...)
):
2025-01-14 23:08:39 +01:00
"""Insert a file directly into the RAG system
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Args:
background_tasks: FastAPI BackgroundTasks for async processing
2025-01-14 23:08:39 +01:00
file: Uploaded file
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Returns:
InsertResponse: Status of the insertion operation
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Raises:
HTTPException: For unsupported file types or processing errors
"""
try:
if not doc_manager.is_supported_file(file.filename):
raise HTTPException(
status_code=400,
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
)
# Create a temporary file to save the uploaded content
temp_path = save_temp_file(file)
# Add to background tasks
background_tasks.add_task(pipeline_index_file, temp_path)
return InsertResponse(
status="success",
message=f"File '{file.filename}' saved successfully. Processing will continue in background.",
)
except Exception as e:
logging.error(f"Error /documents/file: {str(e)}")
logging.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
2025-01-14 23:11:23 +01:00
2025-01-04 02:23:39 +01:00
@app.post(
2025-02-16 19:07:06 +01:00
"/documents/file_batch",
2025-01-04 02:23:39 +01:00
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_batch(
background_tasks: BackgroundTasks, files: List[UploadFile] = File(...)
):
2025-01-14 23:08:39 +01:00
"""Process multiple files in batch mode
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Args:
background_tasks: FastAPI BackgroundTasks for async processing
2025-01-14 23:08:39 +01:00
files: List of files to process
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Returns:
InsertResponse: Status of the batch insertion operation
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Raises:
HTTPException: For processing errors
"""
try:
inserted_count = 0
failed_files = []
temp_files = []
for file in files:
if doc_manager.is_supported_file(file.filename):
# Create a temporary file to save the uploaded content
temp_files.append(save_temp_file(file))
inserted_count += 1
else:
failed_files.append(f"{file.filename} (unsupported type)")
2025-01-14 23:08:39 +01:00
if temp_files:
background_tasks.add_task(pipeline_index_files, temp_files)
2025-01-14 23:08:39 +01:00
# Prepare status message
if inserted_count == len(files):
status = "success"
status_message = f"Successfully inserted all {inserted_count} documents"
elif inserted_count > 0:
status = "partial_success"
status_message = f"Successfully inserted {inserted_count} out of {len(files)} documents"
if failed_files:
status_message += f". Failed files: {', '.join(failed_files)}"
else:
status = "failure"
status_message = "No documents were successfully inserted"
if failed_files:
status_message += f". Failed files: {', '.join(failed_files)}"
return InsertResponse(status=status, message=status_message)
2025-01-14 23:08:39 +01:00
except Exception as e:
logging.error(f"Error /documents/batch: {file.filename}: {str(e)}")
logging.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
2025-01-04 02:23:39 +01:00
@app.delete(
"/documents",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def clear_documents():
"""
Clear all documents from the LightRAG system.
This endpoint deletes all text chunks, entities vector database, and relationships vector database,
effectively clearing all documents from the LightRAG system.
Returns:
InsertResponse: A response object containing the status, message, and the new document count (0 in this case).
"""
try:
rag.text_chunks = []
rag.entities_vdb = None
rag.relationships_vdb = None
return InsertResponse(
status="success", message="All documents cleared successfully"
)
except Exception as e:
logging.error(f"Error DELETE /documents: {str(e)}")
logging.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
@app.post(
2025-02-16 19:13:29 +01:00
"/query", response_model=QueryResponse, dependencies=[Depends(optional_api_key)]
)
async def query_text(request: QueryRequest):
"""
Handle a POST request at the /query endpoint to process user queries using RAG capabilities.
Parameters:
request (QueryRequest): The request object containing the query parameters.
Returns:
QueryResponse: A Pydantic model containing the result of the query processing.
If a string is returned (e.g., cache hit), it's directly returned.
Otherwise, an async generator may be used to build the response.
Raises:
HTTPException: Raised when an error occurs during the request handling process,
with status code 500 and detail containing the exception message.
"""
try:
response = await rag.aquery(
2025-02-16 20:03:52 +01:00
request.query, param=request.to_query_params(False)
)
# If response is a string (e.g. cache hit), return directly
if isinstance(response, str):
return QueryResponse(response=response)
2025-02-16 19:07:06 +01:00
if isinstance(response, dict):
result = json.dumps(response, indent=2)
return QueryResponse(response=result)
else:
return QueryResponse(response=str(response))
except Exception as e:
trace_exception(e)
raise HTTPException(status_code=500, detail=str(e))
@app.post("/query/stream", dependencies=[Depends(optional_api_key)])
async def query_text_stream(request: QueryRequest):
"""
This endpoint performs a retrieval-augmented generation (RAG) query and streams the response.
Args:
request (QueryRequest): The request object containing the query parameters.
optional_api_key (Optional[str], optional): An optional API key for authentication. Defaults to None.
Returns:
StreamingResponse: A streaming response containing the RAG query results.
"""
try:
2025-02-16 20:03:52 +01:00
response = await rag.aquery(
request.query, param=request.to_query_params(True)
)
from fastapi.responses import StreamingResponse
async def stream_generator():
if isinstance(response, str):
# If it's a string, send it all at once
yield f"{json.dumps({'response': response})}\n"
else:
# If it's an async generator, send chunks one by one
try:
async for chunk in response:
if chunk: # Only send non-empty content
yield f"{json.dumps({'response': chunk})}\n"
except Exception as e:
logging.error(f"Streaming error: {str(e)}")
yield f"{json.dumps({'error': str(e)})}\n"
return StreamingResponse(
stream_generator(),
media_type="application/x-ndjson",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"Content-Type": "application/x-ndjson",
2025-02-16 19:07:06 +01:00
"X-Accel-Buffering": "no", # Ensure proper handling of streaming response when proxied by Nginx
},
)
except Exception as e:
trace_exception(e)
raise HTTPException(status_code=500, detail=str(e))
# query all graph labels
@app.get("/graph/label/list")
async def get_graph_labels():
return await rag.get_graph_labels()
# query all graph
@app.get("/graphs")
async def get_knowledge_graph(label: str):
return await rag.get_knowledge_graph(nodel_label=label, max_depth=100)
# Add Ollama API routes
ollama_api = OllamaAPI(rag, top_k=args.top_k)
app.include_router(ollama_api.router, prefix="/api")
2025-01-27 02:10:24 +01:00
@app.get("/documents", dependencies=[Depends(optional_api_key)])
2025-01-27 02:10:24 +01:00
async def documents():
"""Get current system status"""
return doc_manager.indexed_files
@app.get("/health", dependencies=[Depends(optional_api_key)])
async def get_status():
"""Get current system status"""
2025-01-27 12:02:22 +01:00
files = doc_manager.scan_directory()
return {
"status": "healthy",
"working_directory": str(args.working_dir),
"input_directory": str(args.input_dir),
"indexed_files": [str(f) for f in files],
2025-01-27 12:02:22 +01:00
"indexed_files_count": len(files),
"configuration": {
2025-01-10 20:30:58 +01:00
# LLM configuration binding/host address (if applicable)/model (if applicable)
"llm_binding": args.llm_binding,
"llm_binding_host": args.llm_binding_host,
"llm_model": args.llm_model,
# embedding model configuration binding/host address (if applicable)/model (if applicable)
"embedding_binding": args.embedding_binding,
"embedding_binding_host": args.embedding_binding_host,
"embedding_model": args.embedding_model,
"max_tokens": args.max_tokens,
"kv_storage": args.kv_storage,
"doc_status_storage": args.doc_status_storage,
"graph_storage": args.graph_storage,
"vector_storage": args.vector_storage,
},
}
2025-01-24 21:01:34 +01:00
# Webui mount webui/index.html
webui_dir = Path(__file__).parent / "webui"
app.mount(
2025-02-09 23:28:29 +08:00
"/graph-viewer",
StaticFiles(directory=webui_dir, html=True),
name="webui",
)
2025-01-24 13:50:06 +01:00
# Serve the static files
2025-01-27 02:10:24 +01:00
static_dir = Path(__file__).parent / "static"
2025-01-24 13:50:06 +01:00
static_dir.mkdir(exist_ok=True)
2025-02-09 23:28:29 +08:00
app.mount("/webui", StaticFiles(directory=static_dir, html=True), name="static")
return app
2025-01-24 21:01:34 +01:00
def main():
args = parse_args()
import uvicorn
app = create_app(args)
2025-01-24 21:01:34 +01:00
display_splash_screen(args)
2025-01-11 01:35:49 +01:00
uvicorn_config = {
"app": app,
"host": args.host,
"port": args.port,
2025-01-11 01:37:07 +01:00
}
2025-01-11 01:35:49 +01:00
if args.ssl:
2025-01-11 01:37:07 +01:00
uvicorn_config.update(
{
"ssl_certfile": args.ssl_certfile,
"ssl_keyfile": args.ssl_keyfile,
}
)
2025-01-11 01:35:49 +01:00
uvicorn.run(**uvicorn_config)
2024-12-24 10:35:00 +01:00
if __name__ == "__main__":
main()