mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-04 23:50:29 +00:00
41 lines
1.1 KiB
Python
41 lines
1.1 KiB
Python
![]() |
import os
|
||
|
|
||
|
from lightrag import LightRAG, QueryParam
|
||
|
from lightrag.llm import ollama_model_complete, ollama_embedding
|
||
|
from lightrag.utils import EmbeddingFunc
|
||
|
|
||
|
WORKING_DIR = "./dickens"
|
||
|
|
||
|
if not os.path.exists(WORKING_DIR):
|
||
|
os.mkdir(WORKING_DIR)
|
||
|
|
||
|
rag = LightRAG(
|
||
|
working_dir=WORKING_DIR,
|
||
|
llm_model_func=ollama_model_complete,
|
||
|
llm_model_name='your_model_name',
|
||
|
embedding_func=EmbeddingFunc(
|
||
|
embedding_dim=768,
|
||
|
max_token_size=8192,
|
||
|
func=lambda texts: ollama_embedding(
|
||
|
texts,
|
||
|
embed_model="nomic-embed-text"
|
||
|
)
|
||
|
),
|
||
|
)
|
||
|
|
||
|
|
||
|
with open("./book.txt") as f:
|
||
|
rag.insert(f.read())
|
||
|
|
||
|
# Perform naive search
|
||
|
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||
|
|
||
|
# Perform local search
|
||
|
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||
|
|
||
|
# Perform global search
|
||
|
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||
|
|
||
|
# Perform hybrid search
|
||
|
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|