2025-02-20 03:26:39 +08:00
|
|
|
"""
|
|
|
|
LightRAG FastAPI Server
|
|
|
|
"""
|
|
|
|
|
2025-01-31 23:35:42 +08:00
|
|
|
from fastapi import (
|
|
|
|
FastAPI,
|
|
|
|
HTTPException,
|
2025-02-20 03:26:39 +08:00
|
|
|
Depends,
|
2025-01-31 23:35:42 +08:00
|
|
|
)
|
2025-02-20 04:04:54 +08:00
|
|
|
from fastapi.responses import FileResponse
|
2025-02-14 01:12:39 +08:00
|
|
|
import asyncio
|
2025-01-30 23:27:43 +01:00
|
|
|
import threading
|
|
|
|
import os
|
2025-01-24 13:55:50 +01:00
|
|
|
from fastapi.staticfiles import StaticFiles
|
2024-12-22 00:38:38 +01:00
|
|
|
import logging
|
|
|
|
import argparse
|
2025-02-20 03:26:39 +08:00
|
|
|
from typing import Optional, Dict
|
2024-12-22 00:38:38 +01:00
|
|
|
from pathlib import Path
|
2025-02-20 03:26:39 +08:00
|
|
|
import configparser
|
|
|
|
from ascii_colors import ASCIIColors
|
2025-01-27 02:45:44 +08:00
|
|
|
import sys
|
2025-01-04 02:21:37 +01:00
|
|
|
from fastapi.middleware.cors import CORSMiddleware
|
2025-01-16 23:21:50 +01:00
|
|
|
from contextlib import asynccontextmanager
|
2025-01-17 02:34:29 +01:00
|
|
|
from dotenv import load_dotenv
|
2025-02-15 22:25:48 +08:00
|
|
|
|
2025-02-20 03:26:39 +08:00
|
|
|
from .utils_api import get_api_key_dependency
|
|
|
|
|
|
|
|
from lightrag import LightRAG
|
2025-02-19 03:46:18 +08:00
|
|
|
from lightrag.types import GPTKeywordExtractionFormat
|
|
|
|
from lightrag.api import __api_version__
|
|
|
|
from lightrag.utils import EmbeddingFunc
|
2025-02-13 01:11:09 +08:00
|
|
|
from lightrag.utils import logger
|
2025-01-17 02:34:29 +01:00
|
|
|
|
2025-02-20 03:26:39 +08:00
|
|
|
from .routers.document_routes import (
|
|
|
|
DocumentManager,
|
|
|
|
create_document_routes,
|
|
|
|
run_scanning_process,
|
|
|
|
)
|
|
|
|
from .routers.query_routes import create_query_routes
|
|
|
|
from .routers.graph_routes import create_graph_routes
|
|
|
|
from .routers.ollama_api import OllamaAPI, ollama_server_infos
|
2025-02-18 16:33:57 +08:00
|
|
|
|
2025-02-01 15:22:40 +08:00
|
|
|
# Load environment variables
|
2025-02-17 15:10:15 +08:00
|
|
|
try:
|
|
|
|
load_dotenv(override=True)
|
|
|
|
except Exception as e:
|
|
|
|
logger.warning(f"Failed to load .env file: {e}")
|
2025-01-19 04:44:30 +08:00
|
|
|
|
2025-02-13 01:11:09 +08:00
|
|
|
# Initialize config parser
|
|
|
|
config = configparser.ConfigParser()
|
|
|
|
config.read("config.ini")
|
|
|
|
|
2025-02-20 03:26:39 +08:00
|
|
|
# Global configuration
|
|
|
|
global_top_k = 60 # default value
|
|
|
|
|
2025-02-13 04:12:00 +08:00
|
|
|
|
2025-02-13 04:04:51 +08:00
|
|
|
class DefaultRAGStorageConfig:
|
|
|
|
KV_STORAGE = "JsonKVStorage"
|
|
|
|
VECTOR_STORAGE = "NanoVectorDBStorage"
|
|
|
|
GRAPH_STORAGE = "NetworkXStorage"
|
|
|
|
DOC_STATUS_STORAGE = "JsonDocStatusStorage"
|
2025-02-05 22:15:14 +08:00
|
|
|
|
2025-02-13 04:12:00 +08:00
|
|
|
|
2025-02-01 15:22:40 +08:00
|
|
|
# Global progress tracker
|
|
|
|
scan_progress: Dict = {
|
|
|
|
"is_scanning": False,
|
|
|
|
"current_file": "",
|
|
|
|
"indexed_count": 0,
|
|
|
|
"total_files": 0,
|
|
|
|
"progress": 0,
|
|
|
|
}
|
|
|
|
|
|
|
|
# Lock for thread-safe operations
|
|
|
|
progress_lock = threading.Lock()
|
|
|
|
|
2025-01-10 20:30:58 +01:00
|
|
|
def get_default_host(binding_type: str) -> str:
|
|
|
|
default_hosts = {
|
2025-01-19 04:44:30 +08:00
|
|
|
"ollama": os.getenv("LLM_BINDING_HOST", "http://localhost:11434"),
|
|
|
|
"lollms": os.getenv("LLM_BINDING_HOST", "http://localhost:9600"),
|
|
|
|
"azure_openai": os.getenv("AZURE_OPENAI_ENDPOINT", "https://api.openai.com/v1"),
|
|
|
|
"openai": os.getenv("LLM_BINDING_HOST", "https://api.openai.com/v1"),
|
2025-01-10 20:30:58 +01:00
|
|
|
}
|
2025-01-11 01:37:07 +01:00
|
|
|
return default_hosts.get(
|
2025-01-19 04:44:30 +08:00
|
|
|
binding_type, os.getenv("LLM_BINDING_HOST", "http://localhost:11434")
|
2025-01-11 01:37:07 +01:00
|
|
|
) # fallback to ollama if unknown
|
|
|
|
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-02-20 03:26:39 +08:00
|
|
|
def get_env_value(env_key: str, default: any, value_type: type = str) -> any:
|
2025-01-16 23:21:50 +01:00
|
|
|
"""
|
|
|
|
Get value from environment variable with type conversion
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-16 23:21:50 +01:00
|
|
|
Args:
|
|
|
|
env_key (str): Environment variable key
|
2025-02-20 03:26:39 +08:00
|
|
|
default (any): Default value if env variable is not set
|
2025-01-16 23:21:50 +01:00
|
|
|
value_type (type): Type to convert the value to
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-16 23:21:50 +01:00
|
|
|
Returns:
|
2025-02-20 03:26:39 +08:00
|
|
|
any: Converted value from environment or default
|
2025-01-16 23:21:50 +01:00
|
|
|
"""
|
|
|
|
value = os.getenv(env_key)
|
|
|
|
if value is None:
|
|
|
|
return default
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-02-17 01:38:18 +08:00
|
|
|
if value_type is bool:
|
|
|
|
return value.lower() in ("true", "1", "yes", "t", "on")
|
2025-01-16 23:21:50 +01:00
|
|
|
try:
|
|
|
|
return value_type(value)
|
|
|
|
except ValueError:
|
|
|
|
return default
|
|
|
|
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-17 00:53:49 +01:00
|
|
|
def display_splash_screen(args: argparse.Namespace) -> None:
|
|
|
|
"""
|
|
|
|
Display a colorful splash screen showing LightRAG server configuration
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-17 00:53:49 +01:00
|
|
|
Args:
|
|
|
|
args: Parsed command line arguments
|
|
|
|
"""
|
|
|
|
# Banner
|
|
|
|
ASCIIColors.cyan(f"""
|
|
|
|
╔══════════════════════════════════════════════════════════════╗
|
|
|
|
║ 🚀 LightRAG Server v{__api_version__} ║
|
|
|
|
║ Fast, Lightweight RAG Server Implementation ║
|
|
|
|
╚══════════════════════════════════════════════════════════════╝
|
|
|
|
""")
|
|
|
|
|
|
|
|
# Server Configuration
|
|
|
|
ASCIIColors.magenta("\n📡 Server Configuration:")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Host: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.host}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Port: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.port}")
|
2025-02-15 11:46:47 +08:00
|
|
|
ASCIIColors.white(" ├─ CORS Origins: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{os.getenv('CORS_ORIGINS', '*')}")
|
|
|
|
ASCIIColors.white(" ├─ SSL Enabled: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.ssl}")
|
2025-02-15 11:46:47 +08:00
|
|
|
ASCIIColors.white(" └─ API Key: ", end="")
|
|
|
|
ASCIIColors.yellow("Set" if args.key else "Not Set")
|
2025-01-17 00:53:49 +01:00
|
|
|
if args.ssl:
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ SSL Cert: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.ssl_certfile}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" └─ SSL Key: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.ssl_keyfile}")
|
|
|
|
|
|
|
|
# Directory Configuration
|
|
|
|
ASCIIColors.magenta("\n📂 Directory Configuration:")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Working Directory: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.working_dir}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" └─ Input Directory: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.input_dir}")
|
|
|
|
|
|
|
|
# LLM Configuration
|
|
|
|
ASCIIColors.magenta("\n🤖 LLM Configuration:")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Binding: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.llm_binding}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Host: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.llm_binding_host}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" └─ Model: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.llm_model}")
|
|
|
|
|
|
|
|
# Embedding Configuration
|
|
|
|
ASCIIColors.magenta("\n📊 Embedding Configuration:")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Binding: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.embedding_binding}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Host: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.embedding_binding_host}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Model: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.embedding_model}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" └─ Dimensions: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.embedding_dim}")
|
|
|
|
|
|
|
|
# RAG Configuration
|
|
|
|
ASCIIColors.magenta("\n⚙️ RAG Configuration:")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Max Async Operations: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.max_async}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Max Tokens: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.max_tokens}")
|
2025-01-26 05:09:42 +08:00
|
|
|
ASCIIColors.white(" ├─ Max Embed Tokens: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.max_embed_tokens}")
|
2025-01-26 05:09:42 +08:00
|
|
|
ASCIIColors.white(" ├─ Chunk Size: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{args.chunk_size}")
|
|
|
|
ASCIIColors.white(" ├─ Chunk Overlap Size: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{args.chunk_overlap_size}")
|
2025-01-29 21:34:34 +08:00
|
|
|
ASCIIColors.white(" ├─ History Turns: ", end="")
|
2025-01-26 05:09:42 +08:00
|
|
|
ASCIIColors.yellow(f"{args.history_turns}")
|
2025-01-29 21:34:34 +08:00
|
|
|
ASCIIColors.white(" ├─ Cosine Threshold: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{args.cosine_threshold}")
|
|
|
|
ASCIIColors.white(" └─ Top-K: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{args.top_k}")
|
2025-01-17 00:53:49 +01:00
|
|
|
|
|
|
|
# System Configuration
|
2025-02-11 14:57:37 +08:00
|
|
|
ASCIIColors.magenta("\n💾 Storage Configuration:")
|
|
|
|
ASCIIColors.white(" ├─ KV Storage: ", end="")
|
2025-02-13 04:04:51 +08:00
|
|
|
ASCIIColors.yellow(f"{args.kv_storage}")
|
|
|
|
ASCIIColors.white(" ├─ Vector Storage: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{args.vector_storage}")
|
2025-02-11 14:57:37 +08:00
|
|
|
ASCIIColors.white(" ├─ Graph Storage: ", end="")
|
2025-02-13 04:04:51 +08:00
|
|
|
ASCIIColors.yellow(f"{args.graph_storage}")
|
|
|
|
ASCIIColors.white(" └─ Document Status Storage: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{args.doc_status_storage}")
|
2025-02-11 14:57:37 +08:00
|
|
|
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.magenta("\n🛠️ System Configuration:")
|
2025-01-21 03:13:13 +08:00
|
|
|
ASCIIColors.white(" ├─ Ollama Emulating Model: ", end="")
|
2025-01-28 15:30:36 +01:00
|
|
|
ASCIIColors.yellow(f"{ollama_server_infos.LIGHTRAG_MODEL}")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.white(" ├─ Log Level: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.log_level}")
|
2025-02-17 01:38:18 +08:00
|
|
|
ASCIIColors.white(" ├─ Verbose Debug: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{args.verbose}")
|
2025-02-15 11:46:47 +08:00
|
|
|
ASCIIColors.white(" └─ Timeout: ", end="")
|
2025-01-17 00:53:49 +01:00
|
|
|
ASCIIColors.yellow(f"{args.timeout if args.timeout else 'None (infinite)'}")
|
|
|
|
|
|
|
|
# Server Status
|
|
|
|
ASCIIColors.green("\n✨ Server starting up...\n")
|
|
|
|
|
2025-01-17 00:54:24 +01:00
|
|
|
# Server Access Information
|
|
|
|
protocol = "https" if args.ssl else "http"
|
|
|
|
if args.host == "0.0.0.0":
|
|
|
|
ASCIIColors.magenta("\n🌐 Server Access Information:")
|
|
|
|
ASCIIColors.white(" ├─ Local Access: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}")
|
|
|
|
ASCIIColors.white(" ├─ Remote Access: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{protocol}://<your-ip-address>:{args.port}")
|
|
|
|
ASCIIColors.white(" ├─ API Documentation (local): ", end="")
|
|
|
|
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/docs")
|
2025-02-13 20:40:29 +08:00
|
|
|
ASCIIColors.white(" ├─ Alternative Documentation (local): ", end="")
|
2025-01-17 00:54:24 +01:00
|
|
|
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/redoc")
|
2025-02-17 01:14:33 +08:00
|
|
|
ASCIIColors.white(" └─ WebUI (local): ", end="")
|
2025-02-13 18:03:09 +08:00
|
|
|
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/webui")
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-17 00:54:24 +01:00
|
|
|
ASCIIColors.yellow("\n📝 Note:")
|
|
|
|
ASCIIColors.white(""" Since the server is running on 0.0.0.0:
|
|
|
|
- Use 'localhost' or '127.0.0.1' for local access
|
|
|
|
- Use your machine's IP address for remote access
|
|
|
|
- To find your IP address:
|
|
|
|
• Windows: Run 'ipconfig' in terminal
|
|
|
|
• Linux/Mac: Run 'ifconfig' or 'ip addr' in terminal
|
|
|
|
""")
|
|
|
|
else:
|
|
|
|
base_url = f"{protocol}://{args.host}:{args.port}"
|
|
|
|
ASCIIColors.magenta("\n🌐 Server Access Information:")
|
|
|
|
ASCIIColors.white(" ├─ Base URL: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{base_url}")
|
|
|
|
ASCIIColors.white(" ├─ API Documentation: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{base_url}/docs")
|
|
|
|
ASCIIColors.white(" └─ Alternative Documentation: ", end="")
|
|
|
|
ASCIIColors.yellow(f"{base_url}/redoc")
|
|
|
|
|
|
|
|
# Usage Examples
|
|
|
|
ASCIIColors.magenta("\n📚 Quick Start Guide:")
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.cyan("""
|
2025-01-17 00:54:24 +01:00
|
|
|
1. Access the Swagger UI:
|
|
|
|
Open your browser and navigate to the API documentation URL above
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-17 00:54:24 +01:00
|
|
|
2. API Authentication:""")
|
|
|
|
if args.key:
|
|
|
|
ASCIIColors.cyan(""" Add the following header to your requests:
|
|
|
|
X-API-Key: <your-api-key>
|
|
|
|
""")
|
|
|
|
else:
|
|
|
|
ASCIIColors.cyan(" No authentication required\n")
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-17 00:54:24 +01:00
|
|
|
ASCIIColors.cyan(""" 3. Basic Operations:
|
|
|
|
- POST /upload_document: Upload new documents to RAG
|
|
|
|
- POST /query: Query your document collection
|
|
|
|
- GET /collections: List available collections
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-17 00:54:24 +01:00
|
|
|
4. Monitor the server:
|
|
|
|
- Check server logs for detailed operation information
|
|
|
|
- Use healthcheck endpoint: GET /health
|
|
|
|
""")
|
|
|
|
|
|
|
|
# Security Notice
|
|
|
|
if args.key:
|
|
|
|
ASCIIColors.yellow("\n⚠️ Security Notice:")
|
|
|
|
ASCIIColors.white(""" API Key authentication is enabled.
|
|
|
|
Make sure to include the X-API-Key header in all your requests.
|
|
|
|
""")
|
|
|
|
|
2025-01-17 01:36:16 +01:00
|
|
|
ASCIIColors.green("Server is ready to accept connections! 🚀\n")
|
2025-01-17 00:53:49 +01:00
|
|
|
|
2025-01-27 02:45:44 +08:00
|
|
|
# Ensure splash output flush to system log
|
|
|
|
sys.stdout.flush()
|
2025-01-17 00:53:49 +01:00
|
|
|
|
|
|
|
|
2025-01-16 23:21:50 +01:00
|
|
|
def parse_args() -> argparse.Namespace:
|
|
|
|
"""
|
|
|
|
Parse command line arguments with environment variable fallback
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2025-01-16 23:21:50 +01:00
|
|
|
Returns:
|
|
|
|
argparse.Namespace: Parsed arguments
|
|
|
|
"""
|
2025-01-17 01:36:16 +01:00
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
parser = argparse.ArgumentParser(
|
|
|
|
description="LightRAG FastAPI Server with separate working and input directories"
|
|
|
|
)
|
|
|
|
|
2025-02-11 00:55:52 +08:00
|
|
|
parser.add_argument(
|
|
|
|
"--kv-storage",
|
2025-02-13 04:12:00 +08:00
|
|
|
default=get_env_value(
|
|
|
|
"LIGHTRAG_KV_STORAGE", DefaultRAGStorageConfig.KV_STORAGE
|
|
|
|
),
|
2025-02-18 16:14:11 +08:00
|
|
|
help=f"KV storage implementation (default: {DefaultRAGStorageConfig.KV_STORAGE})",
|
2025-02-11 00:55:52 +08:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--doc-status-storage",
|
2025-02-13 04:12:00 +08:00
|
|
|
default=get_env_value(
|
|
|
|
"LIGHTRAG_DOC_STATUS_STORAGE", DefaultRAGStorageConfig.DOC_STATUS_STORAGE
|
|
|
|
),
|
2025-02-18 16:14:11 +08:00
|
|
|
help=f"Document status storage implementation (default: {DefaultRAGStorageConfig.DOC_STATUS_STORAGE})",
|
2025-02-11 00:55:52 +08:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--graph-storage",
|
2025-02-13 04:12:00 +08:00
|
|
|
default=get_env_value(
|
|
|
|
"LIGHTRAG_GRAPH_STORAGE", DefaultRAGStorageConfig.GRAPH_STORAGE
|
|
|
|
),
|
2025-02-18 16:14:11 +08:00
|
|
|
help=f"Graph storage implementation (default: {DefaultRAGStorageConfig.GRAPH_STORAGE})",
|
2025-02-11 00:55:52 +08:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--vector-storage",
|
2025-02-13 04:12:00 +08:00
|
|
|
default=get_env_value(
|
|
|
|
"LIGHTRAG_VECTOR_STORAGE", DefaultRAGStorageConfig.VECTOR_STORAGE
|
|
|
|
),
|
2025-02-18 16:14:11 +08:00
|
|
|
help=f"Vector storage implementation (default: {DefaultRAGStorageConfig.VECTOR_STORAGE})",
|
2025-02-11 00:55:52 +08:00
|
|
|
)
|
|
|
|
|
2025-01-26 05:09:42 +08:00
|
|
|
# Bindings configuration
|
2025-01-10 20:30:58 +01:00
|
|
|
parser.add_argument(
|
|
|
|
"--llm-binding",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("LLM_BINDING", "ollama"),
|
|
|
|
help="LLM binding to be used. Supported: lollms, ollama, openai (default: from env or ollama)",
|
2025-01-10 20:30:58 +01:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--embedding-binding",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("EMBEDDING_BINDING", "ollama"),
|
|
|
|
help="Embedding binding to be used. Supported: lollms, ollama, openai (default: from env or ollama)",
|
2025-01-10 20:30:58 +01:00
|
|
|
)
|
2025-01-11 01:37:07 +01:00
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
# Server configuration
|
|
|
|
parser.add_argument(
|
2025-01-16 23:21:50 +01:00
|
|
|
"--host",
|
|
|
|
default=get_env_value("HOST", "0.0.0.0"),
|
2025-01-17 01:36:16 +01:00
|
|
|
help="Server host (default: from env or 0.0.0.0)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
2025-01-16 23:21:50 +01:00
|
|
|
"--port",
|
|
|
|
type=int,
|
|
|
|
default=get_env_value("PORT", 9621, int),
|
2025-01-17 01:36:16 +01:00
|
|
|
help="Server port (default: from env or 9621)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
# Directory configuration
|
|
|
|
parser.add_argument(
|
|
|
|
"--working-dir",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("WORKING_DIR", "./rag_storage"),
|
|
|
|
help="Working directory for RAG storage (default: from env or ./rag_storage)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--input-dir",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("INPUT_DIR", "./inputs"),
|
|
|
|
help="Directory containing input documents (default: from env or ./inputs)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
|
2025-01-10 20:30:58 +01:00
|
|
|
# LLM Model configuration
|
2024-12-22 00:38:38 +01:00
|
|
|
parser.add_argument(
|
2025-01-10 20:30:58 +01:00
|
|
|
"--llm-binding-host",
|
2025-01-26 05:09:42 +08:00
|
|
|
default=get_env_value("LLM_BINDING_HOST", None),
|
2025-01-26 05:10:57 +08:00
|
|
|
help="LLM server host URL. If not provided, defaults based on llm-binding:\n"
|
|
|
|
+ "- ollama: http://localhost:11434\n"
|
|
|
|
+ "- lollms: http://localhost:9600\n"
|
|
|
|
+ "- openai: https://api.openai.com/v1",
|
2025-01-10 20:30:58 +01:00
|
|
|
)
|
2025-01-20 00:26:28 +01:00
|
|
|
|
|
|
|
default_llm_api_key = get_env_value("LLM_BINDING_API_KEY", None)
|
|
|
|
|
2025-01-17 11:18:45 +01:00
|
|
|
parser.add_argument(
|
|
|
|
"--llm-binding-api-key",
|
|
|
|
default=default_llm_api_key,
|
2025-01-20 00:26:28 +01:00
|
|
|
help="llm server API key (default: from env or empty string)",
|
2025-01-17 11:18:45 +01:00
|
|
|
)
|
2025-01-10 20:30:58 +01:00
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--llm-model",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("LLM_MODEL", "mistral-nemo:latest"),
|
|
|
|
help="LLM model name (default: from env or mistral-nemo:latest)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
2025-01-10 20:30:58 +01:00
|
|
|
|
|
|
|
# Embedding model configuration
|
|
|
|
parser.add_argument(
|
|
|
|
"--embedding-binding-host",
|
2025-01-26 05:09:42 +08:00
|
|
|
default=get_env_value("EMBEDDING_BINDING_HOST", None),
|
2025-01-26 05:10:57 +08:00
|
|
|
help="Embedding server host URL. If not provided, defaults based on embedding-binding:\n"
|
|
|
|
+ "- ollama: http://localhost:11434\n"
|
|
|
|
+ "- lollms: http://localhost:9600\n"
|
|
|
|
+ "- openai: https://api.openai.com/v1",
|
2025-01-10 20:30:58 +01:00
|
|
|
)
|
2025-01-20 00:26:28 +01:00
|
|
|
|
|
|
|
default_embedding_api_key = get_env_value("EMBEDDING_BINDING_API_KEY", "")
|
2025-01-17 11:18:45 +01:00
|
|
|
parser.add_argument(
|
|
|
|
"--embedding-binding-api-key",
|
|
|
|
default=default_embedding_api_key,
|
2025-01-20 00:26:28 +01:00
|
|
|
help="embedding server API key (default: from env or empty string)",
|
2025-01-17 11:18:45 +01:00
|
|
|
)
|
2025-01-10 20:30:58 +01:00
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
parser.add_argument(
|
|
|
|
"--embedding-model",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("EMBEDDING_MODEL", "bge-m3:latest"),
|
|
|
|
help="Embedding model name (default: from env or bge-m3:latest)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
|
2025-01-23 22:58:57 +08:00
|
|
|
parser.add_argument(
|
|
|
|
"--chunk_size",
|
2025-01-26 02:31:16 +08:00
|
|
|
default=get_env_value("CHUNK_SIZE", 1200),
|
|
|
|
help="chunk chunk size default 1200",
|
2025-01-23 22:58:57 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--chunk_overlap_size",
|
2025-01-26 02:31:16 +08:00
|
|
|
default=get_env_value("CHUNK_OVERLAP_SIZE", 100),
|
|
|
|
help="chunk overlap size default 100",
|
2025-01-23 22:58:57 +08:00
|
|
|
)
|
|
|
|
|
2025-01-10 22:17:13 +01:00
|
|
|
def timeout_type(value):
|
|
|
|
if value is None or value == "None":
|
|
|
|
return None
|
|
|
|
return int(value)
|
|
|
|
|
2025-01-10 21:39:25 +01:00
|
|
|
parser.add_argument(
|
|
|
|
"--timeout",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("TIMEOUT", None, timeout_type),
|
2025-01-10 22:17:13 +01:00
|
|
|
type=timeout_type,
|
|
|
|
help="Timeout in seconds (useful when using slow AI). Use None for infinite timeout",
|
2025-01-10 21:39:25 +01:00
|
|
|
)
|
2025-01-16 23:21:50 +01:00
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
# RAG configuration
|
|
|
|
parser.add_argument(
|
2025-01-16 23:21:50 +01:00
|
|
|
"--max-async",
|
|
|
|
type=int,
|
|
|
|
default=get_env_value("MAX_ASYNC", 4, int),
|
2025-01-17 01:36:16 +01:00
|
|
|
help="Maximum async operations (default: from env or 4)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--max-tokens",
|
|
|
|
type=int,
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("MAX_TOKENS", 32768, int),
|
|
|
|
help="Maximum token size (default: from env or 32768)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--embedding-dim",
|
|
|
|
type=int,
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("EMBEDDING_DIM", 1024, int),
|
|
|
|
help="Embedding dimensions (default: from env or 1024)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--max-embed-tokens",
|
|
|
|
type=int,
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("MAX_EMBED_TOKENS", 8192, int),
|
|
|
|
help="Maximum embedding token size (default: from env or 8192)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
# Logging configuration
|
|
|
|
parser.add_argument(
|
|
|
|
"--log-level",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("LOG_LEVEL", "INFO"),
|
2024-12-22 00:38:38 +01:00
|
|
|
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
|
2025-01-16 23:21:50 +01:00
|
|
|
help="Logging level (default: from env or INFO)",
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
|
|
|
|
2025-01-04 02:23:39 +01:00
|
|
|
parser.add_argument(
|
|
|
|
"--key",
|
|
|
|
type=str,
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("LIGHTRAG_API_KEY", None),
|
2025-01-04 02:23:39 +01:00
|
|
|
help="API key for authentication. This protects lightrag server against unauthorized access",
|
|
|
|
)
|
2025-01-04 02:21:37 +01:00
|
|
|
|
2025-01-10 21:39:25 +01:00
|
|
|
# Optional https parameters
|
|
|
|
parser.add_argument(
|
2025-01-16 23:21:50 +01:00
|
|
|
"--ssl",
|
|
|
|
action="store_true",
|
|
|
|
default=get_env_value("SSL", False, bool),
|
2025-01-17 01:36:16 +01:00
|
|
|
help="Enable HTTPS (default: from env or False)",
|
2025-01-10 21:39:25 +01:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--ssl-certfile",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("SSL_CERTFILE", None),
|
2025-01-11 01:37:07 +01:00
|
|
|
help="Path to SSL certificate file (required if --ssl is enabled)",
|
2025-01-10 21:39:25 +01:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--ssl-keyfile",
|
2025-01-16 23:21:50 +01:00
|
|
|
default=get_env_value("SSL_KEYFILE", None),
|
2025-01-11 01:37:07 +01:00
|
|
|
help="Path to SSL private key file (required if --ssl is enabled)",
|
2025-01-10 21:39:25 +01:00
|
|
|
)
|
2025-01-24 17:04:02 +01:00
|
|
|
parser.add_argument(
|
2025-01-24 21:01:34 +01:00
|
|
|
"--auto-scan-at-startup",
|
|
|
|
action="store_true",
|
2025-01-24 17:04:02 +01:00
|
|
|
default=False,
|
2025-01-24 21:01:34 +01:00
|
|
|
help="Enable automatic scanning when the program starts",
|
2025-01-24 17:04:02 +01:00
|
|
|
)
|
|
|
|
|
2025-01-25 22:14:40 +08:00
|
|
|
parser.add_argument(
|
|
|
|
"--history-turns",
|
|
|
|
type=int,
|
2025-01-26 05:19:51 +08:00
|
|
|
default=get_env_value("HISTORY_TURNS", 3, int),
|
|
|
|
help="Number of conversation history turns to include (default: from env or 3)",
|
2025-01-25 22:14:40 +08:00
|
|
|
)
|
|
|
|
|
2025-01-29 21:34:34 +08:00
|
|
|
# Search parameters
|
|
|
|
parser.add_argument(
|
|
|
|
"--top-k",
|
|
|
|
type=int,
|
2025-02-13 06:05:21 +08:00
|
|
|
default=get_env_value("TOP_K", 60, int),
|
|
|
|
help="Number of most similar results to return (default: from env or 60)",
|
2025-01-29 21:34:34 +08:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--cosine-threshold",
|
|
|
|
type=float,
|
2025-02-13 06:05:21 +08:00
|
|
|
default=get_env_value("COSINE_THRESHOLD", 0.2, float),
|
2025-01-29 21:34:34 +08:00
|
|
|
help="Cosine similarity threshold (default: from env or 0.4)",
|
|
|
|
)
|
|
|
|
|
2025-02-05 22:15:14 +08:00
|
|
|
# Ollama model name
|
2025-01-28 15:03:26 +01:00
|
|
|
parser.add_argument(
|
|
|
|
"--simulated-model-name",
|
2025-01-28 15:32:41 +01:00
|
|
|
type=str,
|
2025-01-28 18:20:45 +01:00
|
|
|
default=get_env_value(
|
|
|
|
"SIMULATED_MODEL_NAME", ollama_server_infos.LIGHTRAG_MODEL
|
|
|
|
),
|
2025-01-28 15:03:26 +01:00
|
|
|
help="Number of conversation history turns to include (default: from env or 3)",
|
|
|
|
)
|
|
|
|
|
2025-02-07 23:04:29 +08:00
|
|
|
# Namespace
|
|
|
|
parser.add_argument(
|
|
|
|
"--namespace-prefix",
|
|
|
|
type=str,
|
2025-02-07 23:13:28 +08:00
|
|
|
default=get_env_value("NAMESPACE_PREFIX", ""),
|
2025-02-07 23:04:29 +08:00
|
|
|
help="Prefix of the namespace",
|
|
|
|
)
|
|
|
|
|
2025-02-17 01:38:18 +08:00
|
|
|
parser.add_argument(
|
|
|
|
"--verbose",
|
|
|
|
type=bool,
|
|
|
|
default=get_env_value("VERBOSE", False, bool),
|
|
|
|
help="Verbose debug output(default: from env or false)",
|
|
|
|
)
|
|
|
|
|
2025-01-17 00:53:49 +01:00
|
|
|
args = parser.parse_args()
|
|
|
|
|
2025-02-20 03:26:39 +08:00
|
|
|
# convert relative path to absolute path
|
2025-02-14 12:50:43 +08:00
|
|
|
args.working_dir = os.path.abspath(args.working_dir)
|
|
|
|
args.input_dir = os.path.abspath(args.input_dir)
|
|
|
|
|
2025-01-28 15:30:36 +01:00
|
|
|
ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name
|
2025-01-28 15:03:26 +01:00
|
|
|
|
2025-01-17 00:53:49 +01:00
|
|
|
return args
|
2024-12-22 00:38:38 +01:00
|
|
|
|
|
|
|
|
|
|
|
def create_app(args):
|
2025-02-20 03:26:39 +08:00
|
|
|
# Set global top_k
|
|
|
|
global global_top_k
|
|
|
|
global_top_k = args.top_k # save top_k from args
|
|
|
|
|
2025-02-17 01:38:18 +08:00
|
|
|
# Initialize verbose debug setting
|
|
|
|
from lightrag.utils import set_verbose_debug
|
|
|
|
|
|
|
|
set_verbose_debug(args.verbose)
|
|
|
|
|
2025-01-26 05:09:42 +08:00
|
|
|
# Verify that bindings are correctly setup
|
2025-01-24 17:10:19 +08:00
|
|
|
if args.llm_binding not in [
|
|
|
|
"lollms",
|
|
|
|
"ollama",
|
|
|
|
"openai",
|
|
|
|
"openai-ollama",
|
|
|
|
"azure_openai",
|
|
|
|
]:
|
2025-01-10 20:30:58 +01:00
|
|
|
raise Exception("llm binding not supported")
|
|
|
|
|
2025-01-23 21:30:57 +09:00
|
|
|
if args.embedding_binding not in ["lollms", "ollama", "openai", "azure_openai"]:
|
2025-01-10 20:30:58 +01:00
|
|
|
raise Exception("embedding binding not supported")
|
|
|
|
|
2025-01-26 05:09:42 +08:00
|
|
|
# Set default hosts if not provided
|
|
|
|
if args.llm_binding_host is None:
|
|
|
|
args.llm_binding_host = get_default_host(args.llm_binding)
|
2025-01-26 05:10:57 +08:00
|
|
|
|
2025-01-26 05:09:42 +08:00
|
|
|
if args.embedding_binding_host is None:
|
|
|
|
args.embedding_binding_host = get_default_host(args.embedding_binding)
|
|
|
|
|
2025-01-11 01:35:49 +01:00
|
|
|
# Add SSL validation
|
|
|
|
if args.ssl:
|
|
|
|
if not args.ssl_certfile or not args.ssl_keyfile:
|
2025-01-11 01:37:07 +01:00
|
|
|
raise Exception(
|
|
|
|
"SSL certificate and key files must be provided when SSL is enabled"
|
|
|
|
)
|
2025-01-11 01:35:49 +01:00
|
|
|
if not os.path.exists(args.ssl_certfile):
|
|
|
|
raise Exception(f"SSL certificate file not found: {args.ssl_certfile}")
|
|
|
|
if not os.path.exists(args.ssl_keyfile):
|
|
|
|
raise Exception(f"SSL key file not found: {args.ssl_keyfile}")
|
2025-01-11 01:37:07 +01:00
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
# Setup logging
|
|
|
|
logging.basicConfig(
|
|
|
|
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
|
|
|
|
)
|
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
# Check if API key is provided either through env var or args
|
|
|
|
api_key = os.getenv("LIGHTRAG_API_KEY") or args.key
|
2025-01-04 02:23:39 +01:00
|
|
|
|
2025-01-21 00:50:11 +08:00
|
|
|
# Initialize document manager
|
|
|
|
doc_manager = DocumentManager(args.input_dir)
|
|
|
|
|
|
|
|
@asynccontextmanager
|
|
|
|
async def lifespan(app: FastAPI):
|
|
|
|
"""Lifespan context manager for startup and shutdown events"""
|
2025-02-14 01:12:39 +08:00
|
|
|
# Store background tasks
|
|
|
|
app.state.background_tasks = set()
|
2025-02-13 01:11:09 +08:00
|
|
|
|
|
|
|
try:
|
2025-02-19 03:46:18 +08:00
|
|
|
# Initialize database connections
|
|
|
|
await rag.initialize_storages()
|
2025-02-13 01:11:09 +08:00
|
|
|
|
|
|
|
# Auto scan documents if enabled
|
|
|
|
if args.auto_scan_at_startup:
|
2025-02-14 01:12:39 +08:00
|
|
|
# Start scanning in background
|
|
|
|
with progress_lock:
|
|
|
|
if not scan_progress["is_scanning"]:
|
|
|
|
scan_progress["is_scanning"] = True
|
|
|
|
scan_progress["indexed_count"] = 0
|
|
|
|
scan_progress["progress"] = 0
|
|
|
|
# Create background task
|
2025-02-20 03:26:39 +08:00
|
|
|
task = asyncio.create_task(run_scanning_process(rag, doc_manager))
|
2025-02-14 01:12:39 +08:00
|
|
|
app.state.background_tasks.add(task)
|
|
|
|
task.add_done_callback(app.state.background_tasks.discard)
|
2025-02-14 01:14:12 +08:00
|
|
|
ASCIIColors.info(
|
|
|
|
f"Started background scanning of documents from {args.input_dir}"
|
|
|
|
)
|
2025-02-14 01:12:39 +08:00
|
|
|
else:
|
2025-02-14 01:14:12 +08:00
|
|
|
ASCIIColors.info(
|
2025-02-20 03:26:39 +08:00
|
|
|
"Skip document scanning(another scanning is active)"
|
2025-02-14 01:14:12 +08:00
|
|
|
)
|
2025-02-13 01:11:09 +08:00
|
|
|
|
|
|
|
yield
|
|
|
|
|
|
|
|
finally:
|
2025-02-18 16:14:11 +08:00
|
|
|
# Clean up database connections
|
2025-02-19 03:46:18 +08:00
|
|
|
await rag.finalize_storages()
|
2025-01-21 00:50:11 +08:00
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
# Initialize FastAPI
|
2024-12-22 00:38:38 +01:00
|
|
|
app = FastAPI(
|
|
|
|
title="LightRAG API",
|
2025-01-04 02:23:39 +01:00
|
|
|
description="API for querying text using LightRAG with separate storage and input directories"
|
|
|
|
+ "(With authentication)"
|
|
|
|
if api_key
|
|
|
|
else "",
|
2025-01-19 06:06:17 +08:00
|
|
|
version=__api_version__,
|
2025-01-04 02:23:39 +01:00
|
|
|
openapi_tags=[{"name": "api"}],
|
2025-01-21 01:03:37 +08:00
|
|
|
lifespan=lifespan,
|
2024-12-22 00:38:38 +01:00
|
|
|
)
|
2025-01-04 02:23:39 +01:00
|
|
|
|
2025-02-15 11:39:10 +08:00
|
|
|
def get_cors_origins():
|
|
|
|
"""Get allowed origins from environment variable
|
|
|
|
Returns a list of allowed origins, defaults to ["*"] if not set
|
|
|
|
"""
|
|
|
|
origins_str = os.getenv("CORS_ORIGINS", "*")
|
|
|
|
if origins_str == "*":
|
|
|
|
return ["*"]
|
|
|
|
return [origin.strip() for origin in origins_str.split(",")]
|
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
# Add CORS middleware
|
|
|
|
app.add_middleware(
|
|
|
|
CORSMiddleware,
|
2025-02-15 11:39:10 +08:00
|
|
|
allow_origins=get_cors_origins(),
|
2025-01-04 02:21:37 +01:00
|
|
|
allow_credentials=True,
|
|
|
|
allow_methods=["*"],
|
|
|
|
allow_headers=["*"],
|
|
|
|
)
|
|
|
|
|
|
|
|
# Create the optional API key dependency
|
|
|
|
optional_api_key = get_api_key_dependency(api_key)
|
2024-12-22 00:38:38 +01:00
|
|
|
|
|
|
|
# Create working directory if it doesn't exist
|
|
|
|
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
|
2025-01-25 16:29:59 +08:00
|
|
|
if args.llm_binding == "lollms" or args.embedding_binding == "lollms":
|
2025-01-25 00:11:00 +01:00
|
|
|
from lightrag.llm.lollms import lollms_model_complete, lollms_embed
|
2025-01-25 16:29:59 +08:00
|
|
|
if args.llm_binding == "ollama" or args.embedding_binding == "ollama":
|
2025-01-25 00:11:00 +01:00
|
|
|
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
2025-01-25 16:29:59 +08:00
|
|
|
if args.llm_binding == "openai" or args.embedding_binding == "openai":
|
2025-01-25 00:11:00 +01:00
|
|
|
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
2025-01-25 16:57:47 +08:00
|
|
|
if args.llm_binding == "azure_openai" or args.embedding_binding == "azure_openai":
|
2025-01-25 00:11:00 +01:00
|
|
|
from lightrag.llm.azure_openai import (
|
|
|
|
azure_openai_complete_if_cache,
|
|
|
|
azure_openai_embed,
|
|
|
|
)
|
feat: Added webui management, including file upload, text upload, Q&A query, graph database management (can view tags, view knowledge graph based on tags), system status (whether it is good, data storage status, model status, path),request /webui/index.html
2025-01-25 18:38:46 +08:00
|
|
|
if args.llm_binding_host == "openai-ollama" or args.embedding_binding == "ollama":
|
2025-01-26 09:13:11 +08:00
|
|
|
from lightrag.llm.openai import openai_complete_if_cache
|
|
|
|
from lightrag.llm.ollama import ollama_embed
|
2024-12-22 00:38:38 +01:00
|
|
|
|
2025-01-19 04:44:30 +08:00
|
|
|
async def openai_alike_model_complete(
|
2025-01-19 08:07:26 +08:00
|
|
|
prompt,
|
|
|
|
system_prompt=None,
|
2025-02-06 14:46:07 +08:00
|
|
|
history_messages=None,
|
2025-01-19 08:07:26 +08:00
|
|
|
keyword_extraction=False,
|
|
|
|
**kwargs,
|
2025-01-19 04:44:30 +08:00
|
|
|
) -> str:
|
2025-02-06 15:56:18 +08:00
|
|
|
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
|
|
|
if keyword_extraction:
|
|
|
|
kwargs["response_format"] = GPTKeywordExtractionFormat
|
2025-02-06 14:46:07 +08:00
|
|
|
if history_messages is None:
|
|
|
|
history_messages = []
|
2025-01-19 04:44:30 +08:00
|
|
|
return await openai_complete_if_cache(
|
|
|
|
args.llm_model,
|
|
|
|
prompt,
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
history_messages=history_messages,
|
|
|
|
base_url=args.llm_binding_host,
|
2025-01-20 14:50:06 +08:00
|
|
|
api_key=args.llm_binding_api_key,
|
2025-01-19 04:44:30 +08:00
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
async def azure_openai_model_complete(
|
2025-01-19 08:07:26 +08:00
|
|
|
prompt,
|
|
|
|
system_prompt=None,
|
2025-02-06 14:46:07 +08:00
|
|
|
history_messages=None,
|
2025-01-19 08:07:26 +08:00
|
|
|
keyword_extraction=False,
|
|
|
|
**kwargs,
|
2025-01-19 04:44:30 +08:00
|
|
|
) -> str:
|
2025-02-06 15:56:18 +08:00
|
|
|
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
|
|
|
if keyword_extraction:
|
|
|
|
kwargs["response_format"] = GPTKeywordExtractionFormat
|
2025-02-06 14:46:07 +08:00
|
|
|
if history_messages is None:
|
|
|
|
history_messages = []
|
2025-01-19 04:44:30 +08:00
|
|
|
return await azure_openai_complete_if_cache(
|
|
|
|
args.llm_model,
|
|
|
|
prompt,
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
history_messages=history_messages,
|
|
|
|
base_url=args.llm_binding_host,
|
|
|
|
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
|
|
|
api_version=os.getenv("AZURE_OPENAI_API_VERSION", "2024-08-01-preview"),
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
2025-01-19 05:19:02 +08:00
|
|
|
embedding_func = EmbeddingFunc(
|
|
|
|
embedding_dim=args.embedding_dim,
|
|
|
|
max_token_size=args.max_embed_tokens,
|
|
|
|
func=lambda texts: lollms_embed(
|
|
|
|
texts,
|
|
|
|
embed_model=args.embedding_model,
|
|
|
|
host=args.embedding_binding_host,
|
2025-01-20 00:26:28 +01:00
|
|
|
api_key=args.embedding_binding_api_key,
|
2025-01-19 05:19:02 +08:00
|
|
|
)
|
|
|
|
if args.embedding_binding == "lollms"
|
|
|
|
else ollama_embed(
|
|
|
|
texts,
|
|
|
|
embed_model=args.embedding_model,
|
|
|
|
host=args.embedding_binding_host,
|
2025-01-20 00:26:28 +01:00
|
|
|
api_key=args.embedding_binding_api_key,
|
2025-01-19 05:19:02 +08:00
|
|
|
)
|
|
|
|
if args.embedding_binding == "ollama"
|
2025-01-25 00:11:00 +01:00
|
|
|
else azure_openai_embed(
|
2025-01-19 05:19:02 +08:00
|
|
|
texts,
|
2025-01-19 23:24:37 +01:00
|
|
|
model=args.embedding_model, # no host is used for openai,
|
2025-01-20 00:26:28 +01:00
|
|
|
api_key=args.embedding_binding_api_key,
|
2025-01-19 05:19:02 +08:00
|
|
|
)
|
|
|
|
if args.embedding_binding == "azure_openai"
|
2025-01-25 00:11:00 +01:00
|
|
|
else openai_embed(
|
2025-01-19 05:19:02 +08:00
|
|
|
texts,
|
2025-02-14 00:09:32 +01:00
|
|
|
model=args.embedding_model,
|
|
|
|
base_url=args.embedding_binding_host,
|
2025-01-20 00:26:28 +01:00
|
|
|
api_key=args.embedding_binding_api_key,
|
2025-01-19 05:19:02 +08:00
|
|
|
),
|
|
|
|
)
|
|
|
|
|
2024-12-22 00:38:38 +01:00
|
|
|
# Initialize RAG
|
2025-01-23 22:58:57 +08:00
|
|
|
if args.llm_binding in ["lollms", "ollama", "openai-ollama"]:
|
2025-01-19 04:44:30 +08:00
|
|
|
rag = LightRAG(
|
|
|
|
working_dir=args.working_dir,
|
|
|
|
llm_model_func=lollms_model_complete
|
2025-01-11 01:37:07 +01:00
|
|
|
if args.llm_binding == "lollms"
|
2025-01-23 22:58:57 +08:00
|
|
|
else ollama_model_complete
|
|
|
|
if args.llm_binding == "ollama"
|
|
|
|
else openai_alike_model_complete,
|
2025-01-19 04:44:30 +08:00
|
|
|
llm_model_name=args.llm_model,
|
|
|
|
llm_model_max_async=args.max_async,
|
|
|
|
llm_model_max_token_size=args.max_tokens,
|
2025-01-23 22:58:57 +08:00
|
|
|
chunk_token_size=int(args.chunk_size),
|
|
|
|
chunk_overlap_token_size=int(args.chunk_overlap_size),
|
2025-01-19 04:44:30 +08:00
|
|
|
llm_model_kwargs={
|
|
|
|
"host": args.llm_binding_host,
|
|
|
|
"timeout": args.timeout,
|
|
|
|
"options": {"num_ctx": args.max_tokens},
|
2025-01-20 00:26:28 +01:00
|
|
|
"api_key": args.llm_binding_api_key,
|
2025-01-23 22:58:57 +08:00
|
|
|
}
|
|
|
|
if args.llm_binding == "lollms" or args.llm_binding == "ollama"
|
|
|
|
else {},
|
2025-01-19 05:19:02 +08:00
|
|
|
embedding_func=embedding_func,
|
2025-02-13 04:04:51 +08:00
|
|
|
kv_storage=args.kv_storage,
|
|
|
|
graph_storage=args.graph_storage,
|
|
|
|
vector_storage=args.vector_storage,
|
|
|
|
doc_status_storage=args.doc_status_storage,
|
2025-01-29 21:34:34 +08:00
|
|
|
vector_db_storage_cls_kwargs={
|
|
|
|
"cosine_better_than_threshold": args.cosine_threshold
|
|
|
|
},
|
2025-02-02 07:29:01 +08:00
|
|
|
enable_llm_cache_for_entity_extract=False, # set to True for debuging to reduce llm fee
|
2025-02-02 04:27:21 +08:00
|
|
|
embedding_cache_config={
|
|
|
|
"enabled": True,
|
|
|
|
"similarity_threshold": 0.95,
|
|
|
|
"use_llm_check": False,
|
|
|
|
},
|
2025-02-07 23:04:29 +08:00
|
|
|
log_level=args.log_level,
|
|
|
|
namespace_prefix=args.namespace_prefix,
|
2025-02-19 05:27:38 +08:00
|
|
|
auto_manage_storages_states=False,
|
2025-01-19 08:07:26 +08:00
|
|
|
)
|
|
|
|
else:
|
2025-01-19 04:44:30 +08:00
|
|
|
rag = LightRAG(
|
|
|
|
working_dir=args.working_dir,
|
|
|
|
llm_model_func=azure_openai_model_complete
|
2025-01-11 01:37:07 +01:00
|
|
|
if args.llm_binding == "azure_openai"
|
2025-01-19 04:44:30 +08:00
|
|
|
else openai_alike_model_complete,
|
2025-01-23 22:58:57 +08:00
|
|
|
chunk_token_size=int(args.chunk_size),
|
|
|
|
chunk_overlap_token_size=int(args.chunk_overlap_size),
|
2025-01-29 21:35:46 +08:00
|
|
|
llm_model_kwargs={
|
|
|
|
"timeout": args.timeout,
|
|
|
|
},
|
2025-01-23 01:15:48 +08:00
|
|
|
llm_model_name=args.llm_model,
|
|
|
|
llm_model_max_async=args.max_async,
|
|
|
|
llm_model_max_token_size=args.max_tokens,
|
2025-01-19 05:19:02 +08:00
|
|
|
embedding_func=embedding_func,
|
2025-02-13 04:04:51 +08:00
|
|
|
kv_storage=args.kv_storage,
|
|
|
|
graph_storage=args.graph_storage,
|
|
|
|
vector_storage=args.vector_storage,
|
|
|
|
doc_status_storage=args.doc_status_storage,
|
2025-01-29 21:34:34 +08:00
|
|
|
vector_db_storage_cls_kwargs={
|
|
|
|
"cosine_better_than_threshold": args.cosine_threshold
|
|
|
|
},
|
2025-02-02 07:29:01 +08:00
|
|
|
enable_llm_cache_for_entity_extract=False, # set to True for debuging to reduce llm fee
|
2025-02-02 04:27:21 +08:00
|
|
|
embedding_cache_config={
|
|
|
|
"enabled": True,
|
|
|
|
"similarity_threshold": 0.95,
|
|
|
|
"use_llm_check": False,
|
|
|
|
},
|
2025-02-07 23:04:29 +08:00
|
|
|
log_level=args.log_level,
|
|
|
|
namespace_prefix=args.namespace_prefix,
|
2025-02-19 05:27:38 +08:00
|
|
|
auto_manage_storages_states=False,
|
2025-01-19 04:44:30 +08:00
|
|
|
)
|
2024-12-22 00:38:38 +01:00
|
|
|
|
2025-02-20 03:26:39 +08:00
|
|
|
# Add routes
|
|
|
|
app.include_router(create_document_routes(rag, doc_manager, api_key))
|
|
|
|
app.include_router(create_query_routes(rag, api_key, args.top_k))
|
|
|
|
app.include_router(create_graph_routes(rag, api_key))
|
feat: Added webui management, including file upload, text upload, Q&A query, graph database management (can view tags, view knowledge graph based on tags), system status (whether it is good, data storage status, model status, path),request /webui/index.html
2025-01-25 18:38:46 +08:00
|
|
|
|
2025-02-05 22:15:14 +08:00
|
|
|
# Add Ollama API routes
|
2025-02-13 06:05:21 +08:00
|
|
|
ollama_api = OllamaAPI(rag, top_k=args.top_k)
|
2025-02-05 22:15:14 +08:00
|
|
|
app.include_router(ollama_api.router, prefix="/api")
|
2025-01-27 02:10:24 +01:00
|
|
|
|
2025-01-04 02:21:37 +01:00
|
|
|
@app.get("/health", dependencies=[Depends(optional_api_key)])
|
2024-12-22 00:38:38 +01:00
|
|
|
async def get_status():
|
|
|
|
"""Get current system status"""
|
|
|
|
return {
|
|
|
|
"status": "healthy",
|
|
|
|
"working_directory": str(args.working_dir),
|
|
|
|
"input_directory": str(args.input_dir),
|
|
|
|
"configuration": {
|
2025-01-10 20:30:58 +01:00
|
|
|
# LLM configuration binding/host address (if applicable)/model (if applicable)
|
|
|
|
"llm_binding": args.llm_binding,
|
|
|
|
"llm_binding_host": args.llm_binding_host,
|
|
|
|
"llm_model": args.llm_model,
|
|
|
|
# embedding model configuration binding/host address (if applicable)/model (if applicable)
|
|
|
|
"embedding_binding": args.embedding_binding,
|
|
|
|
"embedding_binding_host": args.embedding_binding_host,
|
2024-12-22 00:38:38 +01:00
|
|
|
"embedding_model": args.embedding_model,
|
|
|
|
"max_tokens": args.max_tokens,
|
2025-02-13 04:04:51 +08:00
|
|
|
"kv_storage": args.kv_storage,
|
|
|
|
"doc_status_storage": args.doc_status_storage,
|
|
|
|
"graph_storage": args.graph_storage,
|
|
|
|
"vector_storage": args.vector_storage,
|
2024-12-22 00:38:38 +01:00
|
|
|
},
|
|
|
|
}
|
2025-01-24 21:01:34 +01:00
|
|
|
|
2025-02-13 17:53:12 +08:00
|
|
|
# Webui mount webui/index.html
|
2025-02-17 01:14:33 +08:00
|
|
|
static_dir = Path(__file__).parent / "webui"
|
2025-01-24 13:50:06 +01:00
|
|
|
static_dir.mkdir(exist_ok=True)
|
2025-02-20 04:04:54 +08:00
|
|
|
app.mount("/webui", StaticFiles(directory=static_dir, html=True, check_dir=True), name="webui")
|
|
|
|
|
|
|
|
@app.get("/webui/")
|
|
|
|
async def webui_root():
|
|
|
|
return FileResponse(static_dir / "index.html")
|
2024-12-22 00:38:38 +01:00
|
|
|
|
|
|
|
return app
|
|
|
|
|
2025-01-24 21:01:34 +01:00
|
|
|
|
2024-12-24 10:18:41 +01:00
|
|
|
def main():
|
2024-12-22 00:38:38 +01:00
|
|
|
args = parse_args()
|
|
|
|
import uvicorn
|
|
|
|
|
|
|
|
app = create_app(args)
|
2025-01-24 21:01:34 +01:00
|
|
|
display_splash_screen(args)
|
2025-01-11 01:35:49 +01:00
|
|
|
uvicorn_config = {
|
|
|
|
"app": app,
|
|
|
|
"host": args.host,
|
|
|
|
"port": args.port,
|
2025-01-11 01:37:07 +01:00
|
|
|
}
|
2025-01-11 01:35:49 +01:00
|
|
|
if args.ssl:
|
2025-01-11 01:37:07 +01:00
|
|
|
uvicorn_config.update(
|
|
|
|
{
|
|
|
|
"ssl_certfile": args.ssl_certfile,
|
|
|
|
"ssl_keyfile": args.ssl_keyfile,
|
|
|
|
}
|
|
|
|
)
|
2025-01-11 01:35:49 +01:00
|
|
|
uvicorn.run(**uvicorn_config)
|
2024-12-24 10:18:41 +01:00
|
|
|
|
2024-12-24 10:35:00 +01:00
|
|
|
|
2024-12-24 10:18:41 +01:00
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|