Merge pull request #723 from danielaskdd/improve-ollama-api-streaming

Improve error handling
This commit is contained in:
zrguo 2025-02-07 02:18:54 +08:00 committed by GitHub
commit 0005462d4d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 223 additions and 102 deletions

View File

@ -205,14 +205,14 @@ class OllamaAPI:
async def stream_generator():
try:
first_chunk_time = None
last_chunk_time = None
last_chunk_time = time.time_ns()
total_response = ""
# Ensure response is an async generator
if isinstance(response, str):
# If it's a string, send in two parts
first_chunk_time = time.time_ns()
last_chunk_time = first_chunk_time
first_chunk_time = start_time
last_chunk_time = time.time_ns()
total_response = response
data = {
@ -241,22 +241,50 @@ class OllamaAPI:
}
yield f"{json.dumps(data, ensure_ascii=False)}\n"
else:
async for chunk in response:
if chunk:
if first_chunk_time is None:
first_chunk_time = time.time_ns()
try:
async for chunk in response:
if chunk:
if first_chunk_time is None:
first_chunk_time = time.time_ns()
last_chunk_time = time.time_ns()
last_chunk_time = time.time_ns()
total_response += chunk
data = {
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
"response": chunk,
"done": False,
}
yield f"{json.dumps(data, ensure_ascii=False)}\n"
total_response += chunk
data = {
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
"response": chunk,
"done": False,
}
yield f"{json.dumps(data, ensure_ascii=False)}\n"
except (asyncio.CancelledError, Exception) as e:
error_msg = str(e)
if isinstance(e, asyncio.CancelledError):
error_msg = "Stream was cancelled by server"
else:
error_msg = f"Provider error: {error_msg}"
logging.error(f"Stream error: {error_msg}")
# Send error message to client
error_data = {
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
"response": f"\n\nError: {error_msg}",
"done": False,
}
yield f"{json.dumps(error_data, ensure_ascii=False)}\n"
# Send final message to close the stream
final_data = {
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
"done": True,
}
yield f"{json.dumps(final_data, ensure_ascii=False)}\n"
return
if first_chunk_time is None:
first_chunk_time = start_time
completion_tokens = estimate_tokens(total_response)
total_time = last_chunk_time - start_time
prompt_eval_time = first_chunk_time - start_time
@ -381,16 +409,16 @@ class OllamaAPI:
)
async def stream_generator():
first_chunk_time = None
last_chunk_time = None
total_response = ""
try:
first_chunk_time = None
last_chunk_time = time.time_ns()
total_response = ""
# Ensure response is an async generator
if isinstance(response, str):
# If it's a string, send in two parts
first_chunk_time = time.time_ns()
last_chunk_time = first_chunk_time
first_chunk_time = start_time
last_chunk_time = time.time_ns()
total_response = response
data = {
@ -474,45 +502,29 @@ class OllamaAPI:
yield f"{json.dumps(final_data, ensure_ascii=False)}\n"
return
if last_chunk_time is not None:
completion_tokens = estimate_tokens(total_response)
total_time = last_chunk_time - start_time
prompt_eval_time = first_chunk_time - start_time
eval_time = last_chunk_time - first_chunk_time
if first_chunk_time is None:
first_chunk_time = start_time
completion_tokens = estimate_tokens(total_response)
total_time = last_chunk_time - start_time
prompt_eval_time = first_chunk_time - start_time
eval_time = last_chunk_time - first_chunk_time
data = {
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
"done": True,
"total_duration": total_time,
"load_duration": 0,
"prompt_eval_count": prompt_tokens,
"prompt_eval_duration": prompt_eval_time,
"eval_count": completion_tokens,
"eval_duration": eval_time,
}
yield f"{json.dumps(data, ensure_ascii=False)}\n"
data = {
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
"done": True,
"total_duration": total_time,
"load_duration": 0,
"prompt_eval_count": prompt_tokens,
"prompt_eval_duration": prompt_eval_time,
"eval_count": completion_tokens,
"eval_duration": eval_time,
}
yield f"{json.dumps(data, ensure_ascii=False)}\n"
except Exception as e:
error_msg = f"Error in stream_generator: {str(e)}"
logging.error(error_msg)
# Send error message to client
error_data = {
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
"error": {"code": "STREAM_ERROR", "message": error_msg},
}
yield f"{json.dumps(error_data, ensure_ascii=False)}\n"
# Ensure sending end marker
final_data = {
"model": self.ollama_server_infos.LIGHTRAG_MODEL,
"created_at": self.ollama_server_infos.LIGHTRAG_CREATED_AT,
"done": True,
}
yield f"{json.dumps(final_data, ensure_ascii=False)}\n"
return
trace_exception(e)
raise
return StreamingResponse(
stream_generator(),

View File

@ -66,6 +66,7 @@ from lightrag.exceptions import (
RateLimitError,
APITimeoutError,
)
from lightrag.api import __api_version__
import numpy as np
from typing import Union
@ -91,11 +92,12 @@ async def ollama_model_if_cache(
timeout = kwargs.pop("timeout", None)
kwargs.pop("hashing_kv", None)
api_key = kwargs.pop("api_key", None)
headers = (
{"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
if api_key
else {"Content-Type": "application/json"}
)
headers = {
"Content-Type": "application/json",
"User-Agent": f"LightRAG/{__api_version__}",
}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
ollama_client = ollama.AsyncClient(host=host, timeout=timeout, headers=headers)
messages = []
if system_prompt:
@ -147,11 +149,12 @@ async def ollama_embedding(texts: list[str], embed_model, **kwargs) -> np.ndarra
async def ollama_embed(texts: list[str], embed_model, **kwargs) -> np.ndarray:
api_key = kwargs.pop("api_key", None)
headers = (
{"Content-Type": "application/json", "Authorization": api_key}
if api_key
else {"Content-Type": "application/json"}
)
headers = {
"Content-Type": "application/json",
"User-Agent": f"LightRAG/{__api_version__}",
}
if api_key:
headers["Authorization"] = api_key
kwargs["headers"] = headers
ollama_client = ollama.Client(**kwargs)
data = ollama_client.embed(model=embed_model, input=texts)

View File

@ -73,16 +73,23 @@ from lightrag.utils import (
logger,
)
from lightrag.types import GPTKeywordExtractionFormat
from lightrag.api import __api_version__
import numpy as np
from typing import Union
class InvalidResponseError(Exception):
"""Custom exception class for triggering retry mechanism"""
pass
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type(
(RateLimitError, APIConnectionError, APITimeoutError)
(RateLimitError, APIConnectionError, APITimeoutError, InvalidResponseError)
),
)
async def openai_complete_if_cache(
@ -99,8 +106,14 @@ async def openai_complete_if_cache(
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
default_headers = {
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
"Content-Type": "application/json",
}
openai_async_client = (
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
AsyncOpenAI(default_headers=default_headers)
if base_url is None
else AsyncOpenAI(base_url=base_url, default_headers=default_headers)
)
kwargs.pop("hashing_kv", None)
kwargs.pop("keyword_extraction", None)
@ -112,17 +125,35 @@ async def openai_complete_if_cache(
# 添加日志输出
logger.debug("===== Query Input to LLM =====")
logger.debug(f"Model: {model} Base URL: {base_url}")
logger.debug(f"Additional kwargs: {kwargs}")
logger.debug(f"Query: {prompt}")
logger.debug(f"System prompt: {system_prompt}")
logger.debug("Full context:")
if "response_format" in kwargs:
response = await openai_async_client.beta.chat.completions.parse(
model=model, messages=messages, **kwargs
)
else:
response = await openai_async_client.chat.completions.create(
model=model, messages=messages, **kwargs
)
# logger.debug(f"Messages: {messages}")
try:
if "response_format" in kwargs:
response = await openai_async_client.beta.chat.completions.parse(
model=model, messages=messages, **kwargs
)
else:
response = await openai_async_client.chat.completions.create(
model=model, messages=messages, **kwargs
)
except APIConnectionError as e:
logger.error(f"OpenAI API Connection Error: {str(e)}")
raise
except RateLimitError as e:
logger.error(f"OpenAI API Rate Limit Error: {str(e)}")
raise
except APITimeoutError as e:
logger.error(f"OpenAI API Timeout Error: {str(e)}")
raise
except Exception as e:
logger.error(f"OpenAI API Call Failed: {str(e)}")
logger.error(f"Model: {model}")
logger.error(f"Request parameters: {kwargs}")
raise
if hasattr(response, "__aiter__"):
@ -140,8 +171,23 @@ async def openai_complete_if_cache(
raise
return inner()
else:
if (
not response
or not response.choices
or not hasattr(response.choices[0], "message")
or not hasattr(response.choices[0].message, "content")
):
logger.error("Invalid response from OpenAI API")
raise InvalidResponseError("Invalid response from OpenAI API")
content = response.choices[0].message.content
if not content or content.strip() == "":
logger.error("Received empty content from OpenAI API")
raise InvalidResponseError("Received empty content from OpenAI API")
if r"\u" in content:
content = safe_unicode_decode(content.encode("utf-8"))
return content
@ -251,8 +297,14 @@ async def openai_embed(
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
default_headers = {
"User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
"Content-Type": "application/json",
}
openai_async_client = (
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
AsyncOpenAI(default_headers=default_headers)
if base_url is None
else AsyncOpenAI(base_url=base_url, default_headers=default_headers)
)
response = await openai_async_client.embeddings.create(
model=model, input=texts, encoding_format="float"

View File

@ -17,14 +17,32 @@ from typing import Dict, Any, Optional, List, Callable
from dataclasses import dataclass, asdict
from datetime import datetime
from pathlib import Path
from enum import Enum, auto
class ErrorCode(Enum):
"""Error codes for MCP errors"""
InvalidRequest = auto()
InternalError = auto()
class McpError(Exception):
"""Base exception class for MCP errors"""
def __init__(self, code: ErrorCode, message: str):
self.code = code
self.message = message
super().__init__(message)
DEFAULT_CONFIG = {
"server": {
"host": "localhost",
"port": 9621,
"model": "lightrag:latest",
"timeout": 120,
"max_retries": 3,
"timeout": 300,
"max_retries": 1,
"retry_delay": 1,
},
"test_cases": {
@ -527,14 +545,7 @@ def test_non_stream_generate() -> None:
response_json = response.json()
# Print response content
print_json_response(
{
"model": response_json["model"],
"response": response_json["response"],
"done": response_json["done"],
},
"Response content",
)
print(json.dumps(response_json, ensure_ascii=False, indent=2))
def test_stream_generate() -> None:
@ -641,35 +652,78 @@ def test_generate_concurrent() -> None:
async with aiohttp.ClientSession() as session:
yield session
async def make_request(session, prompt: str):
async def make_request(session, prompt: str, request_id: int):
url = get_base_url("generate")
data = create_generate_request_data(prompt, stream=False)
try:
async with session.post(url, json=data) as response:
if response.status != 200:
response.raise_for_status()
return await response.json()
error_msg = (
f"Request {request_id} failed with status {response.status}"
)
if OutputControl.is_verbose():
print(f"\n{error_msg}")
raise McpError(ErrorCode.InternalError, error_msg)
result = await response.json()
if "error" in result:
error_msg = (
f"Request {request_id} returned error: {result['error']}"
)
if OutputControl.is_verbose():
print(f"\n{error_msg}")
raise McpError(ErrorCode.InternalError, error_msg)
return result
except Exception as e:
return {"error": str(e)}
error_msg = f"Request {request_id} failed: {str(e)}"
if OutputControl.is_verbose():
print(f"\n{error_msg}")
raise McpError(ErrorCode.InternalError, error_msg)
async def run_concurrent_requests():
prompts = ["第一个问题", "第二个问题", "第三个问题", "第四个问题", "第五个问题"]
async with get_session() as session:
tasks = [make_request(session, prompt) for prompt in prompts]
results = await asyncio.gather(*tasks)
tasks = [
make_request(session, prompt, i + 1) for i, prompt in enumerate(prompts)
]
results = await asyncio.gather(*tasks, return_exceptions=True)
success_results = []
error_messages = []
for i, result in enumerate(results):
if isinstance(result, Exception):
error_messages.append(f"Request {i+1} failed: {str(result)}")
else:
success_results.append((i + 1, result))
if error_messages:
for req_id, result in success_results:
if OutputControl.is_verbose():
print(f"\nRequest {req_id} succeeded:")
print_json_response(result)
error_summary = "\n".join(error_messages)
raise McpError(
ErrorCode.InternalError,
f"Some concurrent requests failed:\n{error_summary}",
)
return results
if OutputControl.is_verbose():
print("\n=== Testing concurrent generate requests ===")
# Run concurrent requests
results = asyncio.run(run_concurrent_requests())
# Print results
for i, result in enumerate(results, 1):
print(f"\nRequest {i} result:")
print_json_response(result)
try:
results = asyncio.run(run_concurrent_requests())
# all success, print out results
for i, result in enumerate(results, 1):
print(f"\nRequest {i} result:")
print_json_response(result)
except McpError:
# error message already printed
raise
def get_test_cases() -> Dict[str, Callable]: