Merge remote-tracking branch 'upstream/memgraph' into add-Memgraph-graph-db

This commit is contained in:
DavIvek 2025-07-08 21:00:24 +02:00
commit 1854d7c75a
6 changed files with 42 additions and 9 deletions

View File

@ -30,7 +30,7 @@
<a href="https://github.com/HKUDS/LightRAG/issues/285"><img src="https://img.shields.io/badge/💬微信群-交流-07c160?style=for-the-badge&logo=wechat&logoColor=white&labelColor=1a1a2e"></a>
</p>
<p>
<a href="README_zh.md"><img src="https://img.shields.io/badge/🇨🇳中文版-1a1a2e?style=for-the-badge"></a>
<a href="README-zh.md"><img src="https://img.shields.io/badge/🇨🇳中文版-1a1a2e?style=for-the-badge"></a>
<a href="README.md"><img src="https://img.shields.io/badge/🇺🇸English-1a1a2e?style=for-the-badge"></a>
</p>
</div>

View File

@ -96,7 +96,7 @@ EMBEDDING_BINDING_API_KEY=your_api_key
# If the embedding service is deployed within the same Docker stack, use host.docker.internal instead of localhost
EMBEDDING_BINDING_HOST=http://localhost:11434
### Num of chunks send to Embedding in single request
# EMBEDDING_BATCH_NUM=32
# EMBEDDING_BATCH_NUM=10
### Max concurrency requests for Embedding
# EMBEDDING_FUNC_MAX_ASYNC=16
### Maximum tokens sent to Embedding for each chunk (no longer in use?)

View File

@ -201,7 +201,7 @@ class LightRAG:
embedding_func: EmbeddingFunc | None = field(default=None)
"""Function for computing text embeddings. Must be set before use."""
embedding_batch_num: int = field(default=int(os.getenv("EMBEDDING_BATCH_NUM", 32)))
embedding_batch_num: int = field(default=int(os.getenv("EMBEDDING_BATCH_NUM", 10)))
"""Batch size for embedding computations."""
embedding_func_max_async: int = field(

View File

@ -210,9 +210,18 @@ async def openai_complete_if_cache(
async def inner():
# Track if we've started iterating
iteration_started = False
final_chunk_usage = None
try:
iteration_started = True
async for chunk in response:
# Check if this chunk has usage information (final chunk)
if hasattr(chunk, "usage") and chunk.usage:
final_chunk_usage = chunk.usage
logger.debug(
f"Received usage info in streaming chunk: {chunk.usage}"
)
# Check if choices exists and is not empty
if not hasattr(chunk, "choices") or not chunk.choices:
logger.warning(f"Received chunk without choices: {chunk}")
@ -222,16 +231,31 @@ async def openai_complete_if_cache(
if not hasattr(chunk.choices[0], "delta") or not hasattr(
chunk.choices[0].delta, "content"
):
logger.warning(
f"Received chunk without delta content: {chunk.choices[0]}"
)
# This might be the final chunk, continue to check for usage
continue
content = chunk.choices[0].delta.content
if content is None:
continue
if r"\u" in content:
content = safe_unicode_decode(content.encode("utf-8"))
yield content
# After streaming is complete, track token usage
if token_tracker and final_chunk_usage:
# Use actual usage from the API
token_counts = {
"prompt_tokens": getattr(final_chunk_usage, "prompt_tokens", 0),
"completion_tokens": getattr(
final_chunk_usage, "completion_tokens", 0
),
"total_tokens": getattr(final_chunk_usage, "total_tokens", 0),
}
token_tracker.add_usage(token_counts)
logger.debug(f"Streaming token usage (from API): {token_counts}")
elif token_tracker:
logger.debug("No usage information available in streaming response")
except Exception as e:
logger.error(f"Error in stream response: {str(e)}")
# Try to clean up resources if possible

View File

@ -26,6 +26,7 @@ from .utils import (
get_conversation_turns,
use_llm_func_with_cache,
update_chunk_cache_list,
remove_think_tags,
)
from .base import (
BaseGraphStorage,
@ -1703,7 +1704,8 @@ async def extract_keywords_only(
result = await use_model_func(kw_prompt, keyword_extraction=True)
# 6. Parse out JSON from the LLM response
match = re.search(r"\{.*\}", result, re.DOTALL)
result = remove_think_tags(result)
match = re.search(r"\{.*?\}", result, re.DOTALL)
if not match:
logger.error("No JSON-like structure found in the LLM respond.")
return [], []

View File

@ -1465,6 +1465,11 @@ async def update_chunk_cache_list(
)
def remove_think_tags(text: str) -> str:
"""Remove <think> tags from the text"""
return re.sub(r"^(<think>.*?</think>|<think>)", "", text, flags=re.DOTALL).strip()
async def use_llm_func_with_cache(
input_text: str,
use_llm_func: callable,
@ -1531,6 +1536,7 @@ async def use_llm_func_with_cache(
kwargs["max_tokens"] = max_tokens
res: str = await use_llm_func(input_text, **kwargs)
res = remove_think_tags(res)
if llm_response_cache.global_config.get("enable_llm_cache_for_entity_extract"):
await save_to_cache(
@ -1557,8 +1563,9 @@ async def use_llm_func_with_cache(
if max_tokens is not None:
kwargs["max_tokens"] = max_tokens
logger.info(f"Call LLM function with query text lenght: {len(input_text)}")
return await use_llm_func(input_text, **kwargs)
logger.info(f"Call LLM function with query text length: {len(input_text)}")
res = await use_llm_func(input_text, **kwargs)
return remove_think_tags(res)
def get_content_summary(content: str, max_length: int = 250) -> str: