mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-06-26 22:00:19 +00:00
remove tqdm and cleaned readme and ollama
This commit is contained in:
parent
24ae083284
commit
2524e02428
10
README.md
10
README.md
@ -344,16 +344,6 @@ rag = LightRAG(
|
||||
),
|
||||
)
|
||||
```
|
||||
#### Fully functional example
|
||||
|
||||
There fully functional example `examples/lightrag_ollama_demo.py` that utilizes `gemma2:2b` model, runs only 4 requests in parallel and set context size to 32k.
|
||||
|
||||
#### Using "Thinking" Models (e.g., DeepSeek)
|
||||
|
||||
To return only the model's response, you can pass `reasoning_tag` in `llm_model_kwargs`.
|
||||
|
||||
For example, for DeepSeek models, `reasoning_tag` should be set to `think`.
|
||||
|
||||
#### Low RAM GPUs
|
||||
|
||||
In order to run this experiment on low RAM GPU you should select small model and tune context window (increasing context increase memory consumption). For example, running this ollama example on repurposed mining GPU with 6Gb of RAM required to set context size to 26k while using `gemma2:2b`. It was able to find 197 entities and 19 relations on `book.txt`.
|
||||
|
@ -7,5 +7,4 @@ python-multipart
|
||||
tenacity
|
||||
tiktoken
|
||||
torch
|
||||
tqdm
|
||||
uvicorn
|
||||
|
@ -22,7 +22,6 @@ if not pm.is_installed("faiss"):
|
||||
|
||||
try:
|
||||
import faiss
|
||||
from tqdm.asyncio import tqdm as tqdm_async
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"`faiss` library is not installed. Please install it via pip: `pip install faiss`."
|
||||
@ -109,16 +108,7 @@ class FaissVectorDBStorage(BaseVectorStorage):
|
||||
for i in range(0, len(contents), self._max_batch_size)
|
||||
]
|
||||
|
||||
pbar = tqdm_async(
|
||||
total=len(batches), desc="Generating embeddings", unit="batch"
|
||||
)
|
||||
|
||||
async def wrapped_task(batch):
|
||||
result = await self.embedding_func(batch)
|
||||
pbar.update(1)
|
||||
return result
|
||||
|
||||
embedding_tasks = [wrapped_task(batch) for batch in batches]
|
||||
embedding_tasks = [self.embedding_func(batch) for batch in batches]
|
||||
embeddings_list = await asyncio.gather(*embedding_tasks)
|
||||
|
||||
# Flatten the list of arrays
|
||||
|
@ -1,7 +1,6 @@
|
||||
import asyncio
|
||||
import os
|
||||
from typing import Any, final
|
||||
from tqdm.asyncio import tqdm as tqdm_async
|
||||
from dataclasses import dataclass
|
||||
import numpy as np
|
||||
from lightrag.utils import logger
|
||||
@ -94,15 +93,7 @@ class MilvusVectorDBStorage(BaseVectorStorage):
|
||||
for i in range(0, len(contents), self._max_batch_size)
|
||||
]
|
||||
|
||||
async def wrapped_task(batch):
|
||||
result = await self.embedding_func(batch)
|
||||
pbar.update(1)
|
||||
return result
|
||||
|
||||
embedding_tasks = [wrapped_task(batch) for batch in batches]
|
||||
pbar = tqdm_async(
|
||||
total=len(embedding_tasks), desc="Generating embeddings", unit="batch"
|
||||
)
|
||||
embedding_tasks = [self.embedding_func(batch) for batch in batches]
|
||||
embeddings_list = await asyncio.gather(*embedding_tasks)
|
||||
|
||||
embeddings = np.concatenate(embeddings_list)
|
||||
|
@ -2,7 +2,6 @@ import os
|
||||
from dataclasses import dataclass
|
||||
import numpy as np
|
||||
import configparser
|
||||
from tqdm.asyncio import tqdm as tqdm_async
|
||||
import asyncio
|
||||
|
||||
from typing import Any, List, Union, final
|
||||
@ -854,17 +853,8 @@ class MongoVectorDBStorage(BaseVectorStorage):
|
||||
for i in range(0, len(contents), self._max_batch_size)
|
||||
]
|
||||
|
||||
async def wrapped_task(batch):
|
||||
result = await self.embedding_func(batch)
|
||||
pbar.update(1)
|
||||
return result
|
||||
|
||||
embedding_tasks = [wrapped_task(batch) for batch in batches]
|
||||
pbar = tqdm_async(
|
||||
total=len(embedding_tasks), desc="Generating embeddings", unit="batch"
|
||||
)
|
||||
embedding_tasks = [self.embedding_func(batch) for batch in batches]
|
||||
embeddings_list = await asyncio.gather(*embedding_tasks)
|
||||
|
||||
embeddings = np.concatenate(embeddings_list)
|
||||
for i, d in enumerate(list_data):
|
||||
d["vector"] = np.array(embeddings[i], dtype=np.float32).tolist()
|
||||
|
@ -1,7 +1,6 @@
|
||||
import asyncio
|
||||
import os
|
||||
from typing import Any, final
|
||||
from tqdm.asyncio import tqdm as tqdm_async
|
||||
from dataclasses import dataclass
|
||||
import numpy as np
|
||||
|
||||
@ -71,15 +70,7 @@ class NanoVectorDBStorage(BaseVectorStorage):
|
||||
for i in range(0, len(contents), self._max_batch_size)
|
||||
]
|
||||
|
||||
async def wrapped_task(batch):
|
||||
result = await self.embedding_func(batch)
|
||||
pbar.update(1)
|
||||
return result
|
||||
|
||||
embedding_tasks = [wrapped_task(batch) for batch in batches]
|
||||
pbar = tqdm_async(
|
||||
total=len(embedding_tasks), desc="Generating embeddings", unit="batch"
|
||||
)
|
||||
embedding_tasks = [self.embedding_func(batch) for batch in batches]
|
||||
embeddings_list = await asyncio.gather(*embedding_tasks)
|
||||
|
||||
embeddings = np.concatenate(embeddings_list)
|
||||
|
@ -41,7 +41,6 @@ if not pm.is_installed("asyncpg"):
|
||||
|
||||
try:
|
||||
import asyncpg
|
||||
from tqdm.asyncio import tqdm as tqdm_async
|
||||
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
@ -380,15 +379,7 @@ class PGVectorStorage(BaseVectorStorage):
|
||||
for i in range(0, len(contents), self._max_batch_size)
|
||||
]
|
||||
|
||||
async def wrapped_task(batch):
|
||||
result = await self.embedding_func(batch)
|
||||
pbar.update(1)
|
||||
return result
|
||||
|
||||
embedding_tasks = [wrapped_task(batch) for batch in batches]
|
||||
pbar = tqdm_async(
|
||||
total=len(embedding_tasks), desc="Generating embeddings", unit="batch"
|
||||
)
|
||||
embedding_tasks = [self.embedding_func(batch) for batch in batches]
|
||||
embeddings_list = await asyncio.gather(*embedding_tasks)
|
||||
|
||||
embeddings = np.concatenate(embeddings_list)
|
||||
|
@ -1,7 +1,6 @@
|
||||
import asyncio
|
||||
import os
|
||||
from typing import Any, final
|
||||
from tqdm.asyncio import tqdm as tqdm_async
|
||||
from dataclasses import dataclass
|
||||
import numpy as np
|
||||
import hashlib
|
||||
@ -110,15 +109,7 @@ class QdrantVectorDBStorage(BaseVectorStorage):
|
||||
for i in range(0, len(contents), self._max_batch_size)
|
||||
]
|
||||
|
||||
async def wrapped_task(batch):
|
||||
result = await self.embedding_func(batch)
|
||||
pbar.update(1)
|
||||
return result
|
||||
|
||||
embedding_tasks = [wrapped_task(batch) for batch in batches]
|
||||
pbar = tqdm_async(
|
||||
total=len(embedding_tasks), desc="Generating embeddings", unit="batch"
|
||||
)
|
||||
embedding_tasks = [self.embedding_func(batch) for batch in batches]
|
||||
embeddings_list = await asyncio.gather(*embedding_tasks)
|
||||
|
||||
embeddings = np.concatenate(embeddings_list)
|
||||
|
@ -1,6 +1,5 @@
|
||||
import os
|
||||
from typing import Any, final
|
||||
from tqdm.asyncio import tqdm as tqdm_async
|
||||
from dataclasses import dataclass
|
||||
import pipmaster as pm
|
||||
import configparser
|
||||
@ -51,7 +50,8 @@ class RedisKVStorage(BaseKVStorage):
|
||||
|
||||
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
||||
pipe = self._redis.pipeline()
|
||||
for k, v in tqdm_async(data.items(), desc="Upserting"):
|
||||
|
||||
for k, v in data.items():
|
||||
pipe.set(f"{self.namespace}:{k}", json.dumps(v))
|
||||
await pipe.execute()
|
||||
|
||||
|
@ -7,7 +7,6 @@ import numpy as np
|
||||
|
||||
from lightrag.types import KnowledgeGraph
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from ..base import BaseGraphStorage, BaseKVStorage, BaseVectorStorage
|
||||
from ..namespace import NameSpace, is_namespace
|
||||
@ -270,15 +269,8 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
||||
for i in range(0, len(contents), self._max_batch_size)
|
||||
]
|
||||
embedding_tasks = [self.embedding_func(batch) for batch in batches]
|
||||
embeddings_list = []
|
||||
for f in tqdm(
|
||||
asyncio.as_completed(embedding_tasks),
|
||||
total=len(embedding_tasks),
|
||||
desc="Generating embeddings",
|
||||
unit="batch",
|
||||
):
|
||||
embeddings = await f
|
||||
embeddings_list.append(embeddings)
|
||||
embeddings_list = await asyncio.gather(*embedding_tasks)
|
||||
|
||||
embeddings = np.concatenate(embeddings_list)
|
||||
for i, d in enumerate(list_data):
|
||||
d["content_vector"] = embeddings[i]
|
||||
|
@ -4,7 +4,7 @@ if sys.version_info < (3, 9):
|
||||
from typing import AsyncIterator
|
||||
else:
|
||||
from collections.abc import AsyncIterator
|
||||
|
||||
|
||||
import pipmaster as pm # Pipmaster for dynamic library install
|
||||
|
||||
# install specific modules
|
||||
@ -48,7 +48,7 @@ async def _ollama_model_if_cache(
|
||||
**kwargs,
|
||||
) -> Union[str, AsyncIterator[str]]:
|
||||
stream = True if kwargs.get("stream") else False
|
||||
|
||||
|
||||
kwargs.pop("max_tokens", None)
|
||||
# kwargs.pop("response_format", None) # allow json
|
||||
host = kwargs.pop("host", None)
|
||||
@ -129,4 +129,4 @@ async def ollama_embed(texts: list[str], embed_model, **kwargs) -> np.ndarray:
|
||||
kwargs["headers"] = headers
|
||||
ollama_client = ollama.Client(**kwargs)
|
||||
data = ollama_client.embed(model=embed_model, input=texts)
|
||||
return data["embeddings"]
|
||||
return data["embeddings"]
|
||||
|
@ -3,7 +3,6 @@ from __future__ import annotations
|
||||
import asyncio
|
||||
import json
|
||||
import re
|
||||
from tqdm.asyncio import tqdm as tqdm_async
|
||||
from typing import Any, AsyncIterator
|
||||
from collections import Counter, defaultdict
|
||||
from .utils import (
|
||||
@ -500,16 +499,8 @@ async def extract_entities(
|
||||
)
|
||||
return dict(maybe_nodes), dict(maybe_edges)
|
||||
|
||||
results = []
|
||||
for result in tqdm_async(
|
||||
asyncio.as_completed([_process_single_content(c) for c in ordered_chunks]),
|
||||
total=len(ordered_chunks),
|
||||
desc="Level 2 - Extracting entities and relationships",
|
||||
unit="chunk",
|
||||
position=1,
|
||||
leave=False,
|
||||
):
|
||||
results.append(await result)
|
||||
tasks = [_process_single_content(c) for c in ordered_chunks]
|
||||
results = await asyncio.gather(*tasks)
|
||||
|
||||
maybe_nodes = defaultdict(list)
|
||||
maybe_edges = defaultdict(list)
|
||||
@ -518,41 +509,20 @@ async def extract_entities(
|
||||
maybe_nodes[k].extend(v)
|
||||
for k, v in m_edges.items():
|
||||
maybe_edges[tuple(sorted(k))].extend(v)
|
||||
logger.debug("Inserting entities into storage...")
|
||||
all_entities_data = []
|
||||
for result in tqdm_async(
|
||||
asyncio.as_completed(
|
||||
[
|
||||
_merge_nodes_then_upsert(k, v, knowledge_graph_inst, global_config)
|
||||
for k, v in maybe_nodes.items()
|
||||
]
|
||||
),
|
||||
total=len(maybe_nodes),
|
||||
desc="Level 3 - Inserting entities",
|
||||
unit="entity",
|
||||
position=2,
|
||||
leave=False,
|
||||
):
|
||||
all_entities_data.append(await result)
|
||||
|
||||
logger.debug("Inserting relationships into storage...")
|
||||
all_relationships_data = []
|
||||
for result in tqdm_async(
|
||||
asyncio.as_completed(
|
||||
[
|
||||
_merge_edges_then_upsert(
|
||||
k[0], k[1], v, knowledge_graph_inst, global_config
|
||||
)
|
||||
for k, v in maybe_edges.items()
|
||||
]
|
||||
),
|
||||
total=len(maybe_edges),
|
||||
desc="Level 3 - Inserting relationships",
|
||||
unit="relationship",
|
||||
position=3,
|
||||
leave=False,
|
||||
):
|
||||
all_relationships_data.append(await result)
|
||||
all_entities_data = await asyncio.gather(
|
||||
*[
|
||||
_merge_nodes_then_upsert(k, v, knowledge_graph_inst, global_config)
|
||||
for k, v in maybe_nodes.items()
|
||||
]
|
||||
)
|
||||
|
||||
all_relationships_data = await asyncio.gather(
|
||||
*[
|
||||
_merge_edges_then_upsert(k[0], k[1], v, knowledge_graph_inst, global_config)
|
||||
for k, v in maybe_edges.items()
|
||||
]
|
||||
)
|
||||
|
||||
if not len(all_entities_data) and not len(all_relationships_data):
|
||||
logger.warning(
|
||||
|
@ -19,7 +19,6 @@ import tiktoken
|
||||
from lightrag.prompt import PROMPTS
|
||||
|
||||
|
||||
|
||||
VERBOSE_DEBUG = os.getenv("VERBOSE", "false").lower() == "true"
|
||||
|
||||
|
||||
@ -84,7 +83,6 @@ class EmbeddingFunc:
|
||||
return await self.func(*args, **kwargs)
|
||||
|
||||
|
||||
|
||||
def locate_json_string_body_from_string(content: str) -> str | None:
|
||||
"""Locate the JSON string body from a string"""
|
||||
try:
|
||||
@ -715,4 +713,3 @@ def get_conversation_turns(
|
||||
)
|
||||
|
||||
return "\n".join(formatted_turns)
|
||||
|
||||
|
@ -2,7 +2,6 @@ import re
|
||||
import json
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def extract_queries(file_path):
|
||||
@ -44,7 +43,7 @@ def run_queries_and_save_to_json(
|
||||
result_file.write("[\n")
|
||||
first_entry = True
|
||||
|
||||
for query_text in tqdm(queries, desc="Processing queries", unit="query"):
|
||||
for query_text in queries:
|
||||
result, error = loop.run_until_complete(
|
||||
process_query(query_text, rag_instance, query_param)
|
||||
)
|
||||
|
@ -3,7 +3,6 @@ import re
|
||||
import json
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from tqdm import tqdm
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
@ -76,7 +75,7 @@ def run_queries_and_save_to_json(
|
||||
result_file.write("[\n")
|
||||
first_entry = True
|
||||
|
||||
for query_text in tqdm(queries, desc="Processing queries", unit="query"):
|
||||
for query_text in queries:
|
||||
result, error = loop.run_until_complete(
|
||||
process_query(query_text, rag_instance, query_param)
|
||||
)
|
||||
|
@ -22,7 +22,6 @@ tenacity
|
||||
|
||||
# LLM packages
|
||||
tiktoken
|
||||
tqdm
|
||||
xxhash
|
||||
|
||||
# Extra libraries are installed when needed using pipmaster
|
||||
|
Loading…
x
Reference in New Issue
Block a user