mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-12-12 15:27:22 +00:00
Fix linting
This commit is contained in:
parent
8cbba6e9db
commit
2a0cff3ed6
@ -211,15 +211,17 @@ async def openai_complete_if_cache(
|
||||
# Track if we've started iterating
|
||||
iteration_started = False
|
||||
final_chunk_usage = None
|
||||
|
||||
|
||||
try:
|
||||
iteration_started = True
|
||||
async for chunk in response:
|
||||
# Check if this chunk has usage information (final chunk)
|
||||
if hasattr(chunk, "usage") and chunk.usage:
|
||||
final_chunk_usage = chunk.usage
|
||||
logger.debug(f"Received usage info in streaming chunk: {chunk.usage}")
|
||||
|
||||
logger.debug(
|
||||
f"Received usage info in streaming chunk: {chunk.usage}"
|
||||
)
|
||||
|
||||
# Check if choices exists and is not empty
|
||||
if not hasattr(chunk, "choices") or not chunk.choices:
|
||||
logger.warning(f"Received chunk without choices: {chunk}")
|
||||
@ -231,21 +233,23 @@ async def openai_complete_if_cache(
|
||||
):
|
||||
# This might be the final chunk, continue to check for usage
|
||||
continue
|
||||
|
||||
|
||||
content = chunk.choices[0].delta.content
|
||||
if content is None:
|
||||
continue
|
||||
if r"\u" in content:
|
||||
content = safe_unicode_decode(content.encode("utf-8"))
|
||||
|
||||
|
||||
yield content
|
||||
|
||||
|
||||
# After streaming is complete, track token usage
|
||||
if token_tracker and final_chunk_usage:
|
||||
# Use actual usage from the API
|
||||
token_counts = {
|
||||
"prompt_tokens": getattr(final_chunk_usage, "prompt_tokens", 0),
|
||||
"completion_tokens": getattr(final_chunk_usage, "completion_tokens", 0),
|
||||
"completion_tokens": getattr(
|
||||
final_chunk_usage, "completion_tokens", 0
|
||||
),
|
||||
"total_tokens": getattr(final_chunk_usage, "total_tokens", 0),
|
||||
}
|
||||
token_tracker.add_usage(token_counts)
|
||||
@ -471,4 +475,4 @@ async def openai_embed(
|
||||
response = await openai_async_client.embeddings.create(
|
||||
model=model, input=texts, encoding_format="float"
|
||||
)
|
||||
return np.array([dp.embedding for dp in response.data])
|
||||
return np.array([dp.embedding for dp in response.data])
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user