mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-11-26 06:56:51 +00:00
Refactored rerank_example file to utilize the updated rerank function.
This commit is contained in:
parent
9bc349ddd6
commit
3d5e6226a9
@ -96,14 +96,14 @@ RERANK_BINDING=null
|
||||
### rerank score chunk filter(set to 0.0 to keep all chunks, 0.6 or above if LLM is not strong enought)
|
||||
# MIN_RERANK_SCORE=0.0
|
||||
|
||||
### For local deployment
|
||||
### For local deployment with vLLM
|
||||
# RERANK_MODEL=BAAI/bge-reranker-v2-m3
|
||||
# RERANK_BINDING_HOST=http://localhost:8000
|
||||
# RERANK_BINDING_HOST=http://localhost:8000/v1/rerank
|
||||
# RERANK_BINDING_API_KEY=your_rerank_api_key_here
|
||||
|
||||
### Default value for Cohere AI
|
||||
# RERANK_MODEL=rerank-v3.5
|
||||
# RERANK_BINDING_HOST=https://ai.znipower.com:5017/rerank
|
||||
# RERANK_BINDING_HOST=https://api.cohere.com/v2/rerank
|
||||
# RERANK_BINDING_API_KEY=your_rerank_api_key_here
|
||||
|
||||
### Default value for Jina AI
|
||||
|
||||
@ -5,15 +5,21 @@ This example demonstrates how to use rerank functionality with LightRAG
|
||||
to improve retrieval quality across different query modes.
|
||||
|
||||
Configuration Required:
|
||||
1. Set your LLM API key and base URL in llm_model_func()
|
||||
2. Set your embedding API key and base URL in embedding_func()
|
||||
3. Set your rerank API key and base URL in the rerank configuration
|
||||
4. Or use environment variables (.env file):
|
||||
- RERANK_MODEL=your_rerank_model
|
||||
- RERANK_BINDING_HOST=your_rerank_endpoint
|
||||
- RERANK_BINDING_API_KEY=your_rerank_api_key
|
||||
1. Set your OpenAI LLM API key and base URL with env vars
|
||||
LLM_MODEL
|
||||
LLM_BINDING_HOST
|
||||
LLM_BINDING_API_KEY
|
||||
2. Set your OpenAI embedding API key and base URL with env vars:
|
||||
EMBEDDING_MODEL
|
||||
EMBEDDING_DIM
|
||||
EMBEDDING_BINDING_HOST
|
||||
EMBEDDING_BINDING_API_KEY
|
||||
3. Set your vLLM deployed AI rerank model setting with env vars:
|
||||
RERANK_MODEL
|
||||
RERANK_BINDING_HOST
|
||||
RERANK_BINDING_API_KEY
|
||||
|
||||
Note: Rerank is now controlled per query via the 'enable_rerank' parameter (default: True)
|
||||
Note: Rerank is controlled per query via the 'enable_rerank' parameter (default: True)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
@ -21,11 +27,13 @@ import os
|
||||
import numpy as np
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.rerank import custom_rerank, RerankModel
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc, setup_logger
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
from functools import partial
|
||||
from lightrag.rerank import cohere_rerank
|
||||
|
||||
# Set up your working directory
|
||||
WORKING_DIR = "./test_rerank"
|
||||
setup_logger("test_rerank")
|
||||
@ -38,12 +46,12 @@ async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
"gpt-4o-mini",
|
||||
os.getenv("LLM_MODEL"),
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
api_key="your_llm_api_key_here",
|
||||
base_url="https://api.your-llm-provider.com/v1",
|
||||
api_key=os.getenv("LLM_BINDING_API_KEY"),
|
||||
base_url=os.getenv("LLM_BINDING_HOST"),
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@ -51,23 +59,18 @@ async def llm_model_func(
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embed(
|
||||
texts,
|
||||
model="text-embedding-3-large",
|
||||
api_key="your_embedding_api_key_here",
|
||||
base_url="https://api.your-embedding-provider.com/v1",
|
||||
model=os.getenv("EMBEDDING_MODEL"),
|
||||
api_key=os.getenv("EMBEDDING_BINDING_API_KEY"),
|
||||
base_url=os.getenv("EMBEDDING_BINDING_HOST"),
|
||||
)
|
||||
|
||||
|
||||
async def my_rerank_func(query: str, documents: list, top_n: int = None, **kwargs):
|
||||
"""Custom rerank function with all settings included"""
|
||||
return await custom_rerank(
|
||||
query=query,
|
||||
documents=documents,
|
||||
model="BAAI/bge-reranker-v2-m3",
|
||||
base_url="https://api.your-rerank-provider.com/v1/rerank",
|
||||
api_key="your_rerank_api_key_here",
|
||||
top_n=top_n or 10,
|
||||
**kwargs,
|
||||
)
|
||||
rerank_model_func = partial(
|
||||
cohere_rerank,
|
||||
model=os.getenv("RERANK_MODEL"),
|
||||
api_key=os.getenv("RERANK_BINDING_API_KEY"),
|
||||
base_url=os.getenv("RERANK_BINDING_HOST"),
|
||||
)
|
||||
|
||||
|
||||
async def create_rag_with_rerank():
|
||||
@ -88,42 +91,7 @@ async def create_rag_with_rerank():
|
||||
func=embedding_func,
|
||||
),
|
||||
# Rerank Configuration - provide the rerank function
|
||||
rerank_model_func=my_rerank_func,
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
async def create_rag_with_rerank_model():
|
||||
"""Alternative: Create LightRAG instance using RerankModel wrapper"""
|
||||
|
||||
# Get embedding dimension
|
||||
test_embedding = await embedding_func(["test"])
|
||||
embedding_dim = test_embedding.shape[1]
|
||||
print(f"Detected embedding dimension: {embedding_dim}")
|
||||
|
||||
# Method 2: Using RerankModel wrapper
|
||||
rerank_model = RerankModel(
|
||||
rerank_func=custom_rerank,
|
||||
kwargs={
|
||||
"model": "BAAI/bge-reranker-v2-m3",
|
||||
"base_url": "https://api.your-rerank-provider.com/v1/rerank",
|
||||
"api_key": "your_rerank_api_key_here",
|
||||
},
|
||||
)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dim,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
rerank_model_func=rerank_model.rerank,
|
||||
rerank_model_func=rerank_model_func,
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
@ -136,7 +104,7 @@ async def test_rerank_with_different_settings():
|
||||
"""
|
||||
Test rerank functionality with different enable_rerank settings
|
||||
"""
|
||||
print("🚀 Setting up LightRAG with Rerank functionality...")
|
||||
print("\n\n🚀 Setting up LightRAG with Rerank functionality...")
|
||||
|
||||
rag = await create_rag_with_rerank()
|
||||
|
||||
@ -199,11 +167,11 @@ async def test_direct_rerank():
|
||||
print("=" * 40)
|
||||
|
||||
documents = [
|
||||
{"content": "Reranking significantly improves retrieval quality"},
|
||||
{"content": "LightRAG supports advanced reranking capabilities"},
|
||||
{"content": "Vector search finds semantically similar documents"},
|
||||
{"content": "Natural language processing with modern transformers"},
|
||||
{"content": "The quick brown fox jumps over the lazy dog"},
|
||||
"Vector search finds semantically similar documents",
|
||||
"LightRAG supports advanced reranking capabilities",
|
||||
"Reranking significantly improves retrieval quality",
|
||||
"Natural language processing with modern transformers",
|
||||
"The quick brown fox jumps over the lazy dog",
|
||||
]
|
||||
|
||||
query = "rerank improve quality"
|
||||
@ -211,20 +179,20 @@ async def test_direct_rerank():
|
||||
print(f"Documents: {len(documents)}")
|
||||
|
||||
try:
|
||||
reranked_docs = await custom_rerank(
|
||||
reranked_results = await rerank_model_func(
|
||||
query=query,
|
||||
documents=documents,
|
||||
model="BAAI/bge-reranker-v2-m3",
|
||||
base_url="https://api.your-rerank-provider.com/v1/rerank",
|
||||
api_key="your_rerank_api_key_here",
|
||||
top_n=3,
|
||||
top_n=4,
|
||||
)
|
||||
|
||||
print("\n✅ Rerank Results:")
|
||||
for i, doc in enumerate(reranked_docs):
|
||||
score = doc.get("rerank_score", "N/A")
|
||||
content = doc.get("content", "")[:60]
|
||||
print(f" {i+1}. Score: {score:.4f} | {content}...")
|
||||
i = 0
|
||||
for result in reranked_results:
|
||||
index = result["index"]
|
||||
score = result["relevance_score"]
|
||||
content = documents[index]
|
||||
print(f" {index}. Score: {score:.4f} | {content}...")
|
||||
i += 1
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Rerank failed: {e}")
|
||||
@ -236,12 +204,12 @@ async def main():
|
||||
print("=" * 60)
|
||||
|
||||
try:
|
||||
# Test rerank with different enable_rerank settings
|
||||
await test_rerank_with_different_settings()
|
||||
|
||||
# Test direct rerank
|
||||
await test_direct_rerank()
|
||||
|
||||
# Test rerank with different enable_rerank settings
|
||||
await test_rerank_with_different_settings()
|
||||
|
||||
print("\n✅ Example completed successfully!")
|
||||
print("\n💡 Key Points:")
|
||||
print(" ✓ Rerank is now controlled per query via 'enable_rerank' parameter")
|
||||
|
||||
@ -469,8 +469,8 @@ class OllamaAPI:
|
||||
"/chat", dependencies=[Depends(combined_auth)], include_in_schema=True
|
||||
)
|
||||
async def chat(raw_request: Request):
|
||||
"""Process chat completion requests acting as an Ollama model
|
||||
Routes user queries through LightRAG by selecting query mode based on prefix indicators.
|
||||
"""Process chat completion requests by acting as an Ollama model.
|
||||
Routes user queries through LightRAG by selecting query mode based on query prefix.
|
||||
Detects and forwards OpenWebUI session-related requests (for meta data generation task) directly to LLM.
|
||||
Supports both application/json and application/octet-stream Content-Types.
|
||||
"""
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user