mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-06-26 22:00:19 +00:00
Added API as an option to the installation, reorganized the API and fused all documentations in README.md
This commit is contained in:
parent
45cea6e9ff
commit
9951f8584a
288
README.md
288
README.md
@ -1019,6 +1019,294 @@ def extract_queries(file_path):
|
||||
└── test.py
|
||||
```
|
||||
|
||||
## Install with API Support
|
||||
|
||||
LightRAG provides optional API support through FastAPI servers that add RAG capabilities to existing LLM services. You can install LightRAG with API support in two ways:
|
||||
|
||||
### 1. Installation from PyPI
|
||||
|
||||
```bash
|
||||
pip install "lightrag-hku[api]"
|
||||
```
|
||||
|
||||
### 2. Installation from Source (Development)
|
||||
|
||||
```bash
|
||||
# Clone the repository
|
||||
git clone https://github.com/ParisNeo/lightrag.git
|
||||
|
||||
# Change to the repository directory
|
||||
cd lightrag
|
||||
|
||||
# Install in editable mode with API support
|
||||
pip install -e ".[api]"
|
||||
```
|
||||
|
||||
### Prerequisites
|
||||
|
||||
Before running any of the servers, ensure you have the corresponding backend service running:
|
||||
|
||||
#### For LoLLMs Server
|
||||
- LoLLMs must be running and accessible
|
||||
- Default connection: http://localhost:11434
|
||||
- Configure using --lollms-host if running on a different host/port
|
||||
|
||||
#### For Ollama Server
|
||||
- Ollama must be running and accessible
|
||||
- Default connection: http://localhost:11434
|
||||
- Configure using --ollama-host if running on a different host/port
|
||||
|
||||
#### For OpenAI Server
|
||||
- Requires valid OpenAI API credentials set in environment variables
|
||||
- OPENAI_API_KEY must be set
|
||||
|
||||
### Configuration Options
|
||||
|
||||
Each server has its own specific configuration options:
|
||||
|
||||
#### LoLLMs Server Options
|
||||
|
||||
| Parameter | Default | Description |
|
||||
|-----------|---------|-------------|
|
||||
| --host | 0.0.0.0 | RAG server host |
|
||||
| --port | 9621 | RAG server port |
|
||||
| --model | mistral-nemo:latest | LLM model name |
|
||||
| --embedding-model | bge-m3:latest | Embedding model name |
|
||||
| --lollms-host | http://localhost:11434 | LoLLMS backend URL |
|
||||
| --working-dir | ./rag_storage | Working directory for RAG |
|
||||
| --max-async | 4 | Maximum async operations |
|
||||
| --max-tokens | 32768 | Maximum token size |
|
||||
| --embedding-dim | 1024 | Embedding dimensions |
|
||||
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
||||
| --input-file | ./book.txt | Initial input file |
|
||||
| --log-level | INFO | Logging level |
|
||||
|
||||
#### Ollama Server Options
|
||||
|
||||
| Parameter | Default | Description |
|
||||
|-----------|---------|-------------|
|
||||
| --host | 0.0.0.0 | RAG server host |
|
||||
| --port | 9621 | RAG server port |
|
||||
| --model | mistral-nemo:latest | LLM model name |
|
||||
| --embedding-model | bge-m3:latest | Embedding model name |
|
||||
| --ollama-host | http://localhost:11434 | Ollama backend URL |
|
||||
| --working-dir | ./rag_storage | Working directory for RAG |
|
||||
| --max-async | 4 | Maximum async operations |
|
||||
| --max-tokens | 32768 | Maximum token size |
|
||||
| --embedding-dim | 1024 | Embedding dimensions |
|
||||
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
||||
| --input-file | ./book.txt | Initial input file |
|
||||
| --log-level | INFO | Logging level |
|
||||
|
||||
#### OpenAI Server Options
|
||||
|
||||
| Parameter | Default | Description |
|
||||
|-----------|---------|-------------|
|
||||
| --host | 0.0.0.0 | RAG server host |
|
||||
| --port | 9621 | RAG server port |
|
||||
| --model | gpt-4 | OpenAI model name |
|
||||
| --embedding-model | text-embedding-3-large | OpenAI embedding model |
|
||||
| --working-dir | ./rag_storage | Working directory for RAG |
|
||||
| --max-tokens | 32768 | Maximum token size |
|
||||
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
||||
| --input-dir | ./inputs | Input directory for documents |
|
||||
| --log-level | INFO | Logging level |
|
||||
|
||||
### Example Usage
|
||||
|
||||
#### LoLLMs RAG Server
|
||||
|
||||
```bash
|
||||
# Custom configuration with specific model and working directory
|
||||
lollms-lightrag-server --model mistral-nemo --port 8080 --working-dir ./custom_rag
|
||||
|
||||
# Using specific models (ensure they are installed in your LoLLMs instance)
|
||||
lollms-lightrag-server --model mistral-nemo:latest --embedding-model bge-m3 --embedding-dim 1024
|
||||
```
|
||||
|
||||
#### Ollama RAG Server
|
||||
|
||||
```bash
|
||||
# Custom configuration with specific model and working directory
|
||||
ollama-lightrag-server --model mistral-nemo:latest --port 8080 --working-dir ./custom_rag
|
||||
|
||||
# Using specific models (ensure they are installed in your Ollama instance)
|
||||
ollama-lightrag-server --model mistral-nemo:latest --embedding-model bge-m3 --embedding-dim 1024
|
||||
```
|
||||
|
||||
#### OpenAI RAG Server
|
||||
|
||||
```bash
|
||||
# Using GPT-4 with text-embedding-3-large
|
||||
openai-lightrag-server --port 9624 --model gpt-4 --embedding-model text-embedding-3-large
|
||||
```
|
||||
|
||||
**Important Notes:**
|
||||
- For LoLLMs: Make sure the specified models are installed in your LoLLMs instance
|
||||
- For Ollama: Make sure the specified models are installed in your Ollama instance
|
||||
- For OpenAI: Ensure you have set up your OPENAI_API_KEY environment variable
|
||||
|
||||
For help on any server, use the --help flag:
|
||||
```bash
|
||||
lollms-lightrag-server --help
|
||||
ollama-lightrag-server --help
|
||||
openai-lightrag-server --help
|
||||
```
|
||||
|
||||
Note: If you don't need the API functionality, you can install the base package without API support using:
|
||||
```bash
|
||||
pip install lightrag-hku
|
||||
```
|
||||
|
||||
## API Endpoints
|
||||
|
||||
All servers (LoLLMs, Ollama, and OpenAI) provide the same REST API endpoints for RAG functionality.
|
||||
|
||||
### Query Endpoints
|
||||
|
||||
#### POST /query
|
||||
Query the RAG system with options for different search modes.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/query" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"query": "Your question here", "mode": "hybrid"}'
|
||||
```
|
||||
|
||||
#### POST /query/stream
|
||||
Stream responses from the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/query/stream" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"query": "Your question here", "mode": "hybrid"}'
|
||||
```
|
||||
|
||||
### Document Management Endpoints
|
||||
|
||||
#### POST /documents/text
|
||||
Insert text directly into the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/text" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"text": "Your text content here", "description": "Optional description"}'
|
||||
```
|
||||
|
||||
#### POST /documents/file
|
||||
Upload a single file to the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/file" \
|
||||
-F "file=@/path/to/your/document.txt" \
|
||||
-F "description=Optional description"
|
||||
```
|
||||
|
||||
#### POST /documents/batch
|
||||
Upload multiple files at once.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/batch" \
|
||||
-F "files=@/path/to/doc1.txt" \
|
||||
-F "files=@/path/to/doc2.txt"
|
||||
```
|
||||
|
||||
#### DELETE /documents
|
||||
Clear all documents from the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X DELETE "http://localhost:9621/documents"
|
||||
```
|
||||
|
||||
### Utility Endpoints
|
||||
|
||||
#### GET /health
|
||||
Check server health and configuration.
|
||||
|
||||
```bash
|
||||
curl "http://localhost:9621/health"
|
||||
```
|
||||
|
||||
## Development
|
||||
|
||||
### Running in Development Mode
|
||||
|
||||
For LoLLMs:
|
||||
```bash
|
||||
uvicorn lollms_lightrag_server:app --reload --port 9621
|
||||
```
|
||||
|
||||
For Ollama:
|
||||
```bash
|
||||
uvicorn ollama_lightrag_server:app --reload --port 9621
|
||||
```
|
||||
|
||||
For OpenAI:
|
||||
```bash
|
||||
uvicorn openai_lightrag_server:app --reload --port 9621
|
||||
```
|
||||
|
||||
### API Documentation
|
||||
|
||||
When any server is running, visit:
|
||||
- Swagger UI: http://localhost:9621/docs
|
||||
- ReDoc: http://localhost:9621/redoc
|
||||
|
||||
### Testing API Endpoints
|
||||
|
||||
You can test the API endpoints using the provided curl commands or through the Swagger UI interface. Make sure to:
|
||||
1. Start the appropriate backend service (LoLLMs, Ollama, or OpenAI)
|
||||
2. Start the RAG server
|
||||
3. Upload some documents using the document management endpoints
|
||||
4. Query the system using the query endpoints
|
||||
|
||||
### Important Features
|
||||
|
||||
#### Automatic Document Vectorization
|
||||
When starting any of the servers with the `--input-dir` parameter, the system will automatically:
|
||||
1. Scan the specified directory for documents
|
||||
2. Check for existing vectorized content in the database
|
||||
3. Only vectorize new documents that aren't already in the database
|
||||
4. Make all content immediately available for RAG queries
|
||||
|
||||
This intelligent caching mechanism:
|
||||
- Prevents unnecessary re-vectorization of existing documents
|
||||
- Reduces startup time for subsequent runs
|
||||
- Preserves system resources
|
||||
- Maintains consistency across restarts
|
||||
|
||||
### Example Usage
|
||||
|
||||
#### LoLLMs RAG Server
|
||||
|
||||
```bash
|
||||
# Start server with automatic document vectorization
|
||||
# Only new documents will be vectorized, existing ones will be loaded from cache
|
||||
lollms-lightrag-server --input-dir ./my_documents --port 8080
|
||||
```
|
||||
|
||||
#### Ollama RAG Server
|
||||
|
||||
```bash
|
||||
# Start server with automatic document vectorization
|
||||
# Previously vectorized documents will be loaded from the database
|
||||
ollama-lightrag-server --input-dir ./my_documents --port 8080
|
||||
```
|
||||
|
||||
#### OpenAI RAG Server
|
||||
|
||||
```bash
|
||||
# Start server with automatic document vectorization
|
||||
# Existing documents are retrieved from cache, only new ones are processed
|
||||
openai-lightrag-server --input-dir ./my_documents --port 9624
|
||||
```
|
||||
|
||||
**Important Notes:**
|
||||
- The `--input-dir` parameter enables automatic document processing at startup
|
||||
- Documents already in the database are not re-vectorized
|
||||
- Only new documents in the input directory will be processed
|
||||
- This optimization significantly reduces startup time for subsequent runs
|
||||
- The working directory (`--working-dir`) stores the vectorized documents database
|
||||
|
||||
## Star History
|
||||
|
||||
|
@ -1,177 +0,0 @@
|
||||
# LightRAG API Server
|
||||
|
||||
A powerful FastAPI-based server for managing and querying documents using LightRAG (Light Retrieval-Augmented Generation). This server provides a REST API interface for document management and intelligent querying using various LLM models through LoLLMS.
|
||||
|
||||
## Features
|
||||
|
||||
- 🔍 Multiple search modes (naive, local, global, hybrid)
|
||||
- 📡 Streaming and non-streaming responses
|
||||
- 📝 Document management (insert, batch upload, clear)
|
||||
- ⚙️ Highly configurable model parameters
|
||||
- 📚 Support for text and file uploads
|
||||
- 🔧 RESTful API with automatic documentation
|
||||
- 🚀 Built with FastAPI for high performance
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- Python 3.8+
|
||||
- LoLLMS server running locally or remotely
|
||||
- Required Python packages:
|
||||
- fastapi
|
||||
- uvicorn
|
||||
- lightrag
|
||||
- pydantic
|
||||
|
||||
## Installation
|
||||
If you are using windows, you will need to donwload and install visual c++ build tools from [https://visualstudio.microsoft.com/visual-cpp-build-tools/ ](https://visualstudio.microsoft.com/visual-cpp-build-tools/)
|
||||
Make sure you install the VS 2022 C++ x64/x86 Build tools like from indivisual componants tab:
|
||||

|
||||
|
||||
This is mandatory for builmding some modules.
|
||||
|
||||
1. Clone the repository:
|
||||
```bash
|
||||
git clone https://github.com/ParisNeo/LightRAG.git
|
||||
cd api
|
||||
```
|
||||
|
||||
2. Install dependencies:
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
3. Make sure LoLLMS is running and accessible.
|
||||
|
||||
## Configuration
|
||||
|
||||
The server can be configured using command-line arguments:
|
||||
|
||||
```bash
|
||||
python ollama_lightollama_lightrag_server.py --help
|
||||
```
|
||||
|
||||
Available options:
|
||||
|
||||
| Parameter | Default | Description |
|
||||
|-----------|---------|-------------|
|
||||
| --host | 0.0.0.0 | Server host |
|
||||
| --port | 9621 | Server port |
|
||||
| --model | mistral-nemo:latest | LLM model name |
|
||||
| --embedding-model | bge-m3:latest | Embedding model name |
|
||||
| --lollms-host | http://localhost:11434 | LoLLMS host URL |
|
||||
| --working-dir | ./rag_storage | Working directory for RAG |
|
||||
| --max-async | 4 | Maximum async operations |
|
||||
| --max-tokens | 32768 | Maximum token size |
|
||||
| --embedding-dim | 1024 | Embedding dimensions |
|
||||
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
||||
| --input-file | ./book.txt | Initial input file |
|
||||
| --log-level | INFO | Logging level |
|
||||
|
||||
## Quick Start
|
||||
|
||||
1. Basic usage with default settings:
|
||||
```bash
|
||||
python ollama_lightrag_server.py
|
||||
```
|
||||
|
||||
2. Custom configuration:
|
||||
```bash
|
||||
python ollama_lightrag_server.py --model llama2:13b --port 8080 --working-dir ./custom_rag
|
||||
```
|
||||
|
||||
Make sure the models are installed in your lollms instance
|
||||
```bash
|
||||
python ollama_lightrag_server.py --model mistral-nemo:latest --embedding-model bge-m3 --embedding-dim 1024
|
||||
```
|
||||
|
||||
## API Endpoints
|
||||
|
||||
### Query Endpoints
|
||||
|
||||
#### POST /query
|
||||
Query the RAG system with options for different search modes.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/query" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"query": "Your question here", "mode": "hybrid"}'
|
||||
```
|
||||
|
||||
#### POST /query/stream
|
||||
Stream responses from the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/query/stream" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"query": "Your question here", "mode": "hybrid"}'
|
||||
```
|
||||
|
||||
### Document Management Endpoints
|
||||
|
||||
#### POST /documents/text
|
||||
Insert text directly into the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/text" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"text": "Your text content here", "description": "Optional description"}'
|
||||
```
|
||||
|
||||
#### POST /documents/file
|
||||
Upload a single file to the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/file" \
|
||||
-F "file=@/path/to/your/document.txt" \
|
||||
-F "description=Optional description"
|
||||
```
|
||||
|
||||
#### POST /documents/batch
|
||||
Upload multiple files at once.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/batch" \
|
||||
-F "files=@/path/to/doc1.txt" \
|
||||
-F "files=@/path/to/doc2.txt"
|
||||
```
|
||||
|
||||
#### DELETE /documents
|
||||
Clear all documents from the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X DELETE "http://localhost:9621/documents"
|
||||
```
|
||||
|
||||
### Utility Endpoints
|
||||
|
||||
#### GET /health
|
||||
Check server health and configuration.
|
||||
|
||||
```bash
|
||||
curl "http://localhost:9621/health"
|
||||
```
|
||||
|
||||
## Development
|
||||
|
||||
### Running in Development Mode
|
||||
|
||||
```bash
|
||||
uvicorn ollama_lightrag_server:app --reload --port 9621
|
||||
```
|
||||
|
||||
### API Documentation
|
||||
|
||||
When the server is running, visit:
|
||||
- Swagger UI: http://localhost:9621/docs
|
||||
- ReDoc: http://localhost:9621/redoc
|
||||
|
||||
|
||||
## License
|
||||
|
||||
This project is licensed under the MIT License - see the LICENSE file for details.
|
||||
|
||||
## Acknowledgments
|
||||
|
||||
- Built with [FastAPI](https://fastapi.tiangolo.com/)
|
||||
- Uses [LightRAG](https://github.com/HKUDS/LightRAG) for document processing
|
||||
- Powered by [LoLLMS](https://lollms.ai/) for LLM inference
|
@ -1,177 +0,0 @@
|
||||
# LightRAG API Server
|
||||
|
||||
A powerful FastAPI-based server for managing and querying documents using LightRAG (Light Retrieval-Augmented Generation). This server provides a REST API interface for document management and intelligent querying using various LLM models through Ollama.
|
||||
|
||||
## Features
|
||||
|
||||
- 🔍 Multiple search modes (naive, local, global, hybrid)
|
||||
- 📡 Streaming and non-streaming responses
|
||||
- 📝 Document management (insert, batch upload, clear)
|
||||
- ⚙️ Highly configurable model parameters
|
||||
- 📚 Support for text and file uploads
|
||||
- 🔧 RESTful API with automatic documentation
|
||||
- 🚀 Built with FastAPI for high performance
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- Python 3.8+
|
||||
- Ollama server running locally or remotely
|
||||
- Required Python packages:
|
||||
- fastapi
|
||||
- uvicorn
|
||||
- lightrag
|
||||
- pydantic
|
||||
|
||||
## Installation
|
||||
If you are using windows, you will need to donwload and install visual c++ build tools from [https://visualstudio.microsoft.com/visual-cpp-build-tools/ ](https://visualstudio.microsoft.com/visual-cpp-build-tools/)
|
||||
Make sure you install the VS 2022 C++ x64/x86 Build tools like from indivisual componants tab:
|
||||

|
||||
|
||||
This is mandatory for builmding some modules.
|
||||
|
||||
1. Clone the repository:
|
||||
```bash
|
||||
git clone https://github.com/ParisNeo/LightRAG.git
|
||||
cd api
|
||||
```
|
||||
|
||||
2. Install dependencies:
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
3. Make sure Ollama is running and accessible.
|
||||
|
||||
## Configuration
|
||||
|
||||
The server can be configured using command-line arguments:
|
||||
|
||||
```bash
|
||||
python ollama_lightollama_lightrag_server.py --help
|
||||
```
|
||||
|
||||
Available options:
|
||||
|
||||
| Parameter | Default | Description |
|
||||
|-----------|---------|-------------|
|
||||
| --host | 0.0.0.0 | Server host |
|
||||
| --port | 9621 | Server port |
|
||||
| --model | mistral-nemo:latest | LLM model name |
|
||||
| --embedding-model | bge-m3:latest | Embedding model name |
|
||||
| --ollama-host | http://localhost:11434 | Ollama host URL |
|
||||
| --working-dir | ./rag_storage | Working directory for RAG |
|
||||
| --max-async | 4 | Maximum async operations |
|
||||
| --max-tokens | 32768 | Maximum token size |
|
||||
| --embedding-dim | 1024 | Embedding dimensions |
|
||||
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
||||
| --input-file | ./book.txt | Initial input file |
|
||||
| --log-level | INFO | Logging level |
|
||||
|
||||
## Quick Start
|
||||
|
||||
1. Basic usage with default settings:
|
||||
```bash
|
||||
python ollama_lightrag_server.py
|
||||
```
|
||||
|
||||
2. Custom configuration:
|
||||
```bash
|
||||
python ollama_lightrag_server.py --model llama2:13b --port 8080 --working-dir ./custom_rag
|
||||
```
|
||||
|
||||
Make sure the models are installed in your ollama instance
|
||||
```bash
|
||||
python ollama_lightrag_server.py --model mistral-nemo:latest --embedding-model bge-m3 --embedding-dim 1024
|
||||
```
|
||||
|
||||
## API Endpoints
|
||||
|
||||
### Query Endpoints
|
||||
|
||||
#### POST /query
|
||||
Query the RAG system with options for different search modes.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/query" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"query": "Your question here", "mode": "hybrid"}'
|
||||
```
|
||||
|
||||
#### POST /query/stream
|
||||
Stream responses from the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/query/stream" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"query": "Your question here", "mode": "hybrid"}'
|
||||
```
|
||||
|
||||
### Document Management Endpoints
|
||||
|
||||
#### POST /documents/text
|
||||
Insert text directly into the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/text" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"text": "Your text content here", "description": "Optional description"}'
|
||||
```
|
||||
|
||||
#### POST /documents/file
|
||||
Upload a single file to the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/file" \
|
||||
-F "file=@/path/to/your/document.txt" \
|
||||
-F "description=Optional description"
|
||||
```
|
||||
|
||||
#### POST /documents/batch
|
||||
Upload multiple files at once.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/batch" \
|
||||
-F "files=@/path/to/doc1.txt" \
|
||||
-F "files=@/path/to/doc2.txt"
|
||||
```
|
||||
|
||||
#### DELETE /documents
|
||||
Clear all documents from the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X DELETE "http://localhost:9621/documents"
|
||||
```
|
||||
|
||||
### Utility Endpoints
|
||||
|
||||
#### GET /health
|
||||
Check server health and configuration.
|
||||
|
||||
```bash
|
||||
curl "http://localhost:9621/health"
|
||||
```
|
||||
|
||||
## Development
|
||||
|
||||
### Running in Development Mode
|
||||
|
||||
```bash
|
||||
uvicorn ollama_lightrag_server:app --reload --port 9621
|
||||
```
|
||||
|
||||
### API Documentation
|
||||
|
||||
When the server is running, visit:
|
||||
- Swagger UI: http://localhost:9621/docs
|
||||
- ReDoc: http://localhost:9621/redoc
|
||||
|
||||
|
||||
## License
|
||||
|
||||
This project is licensed under the MIT License - see the LICENSE file for details.
|
||||
|
||||
## Acknowledgments
|
||||
|
||||
- Built with [FastAPI](https://fastapi.tiangolo.com/)
|
||||
- Uses [LightRAG](https://github.com/HKUDS/LightRAG) for document processing
|
||||
- Powered by [Ollama](https://ollama.ai/) for LLM inference
|
@ -1,171 +0,0 @@
|
||||
|
||||
# LightRAG API Server
|
||||
|
||||
A powerful FastAPI-based server for managing and querying documents using LightRAG (Light Retrieval-Augmented Generation). This server provides a REST API interface for document management and intelligent querying using OpenAI's language models.
|
||||
|
||||
## Features
|
||||
|
||||
- 🔍 Multiple search modes (naive, local, global, hybrid)
|
||||
- 📡 Streaming and non-streaming responses
|
||||
- 📝 Document management (insert, batch upload, clear)
|
||||
- ⚙️ Highly configurable model parameters
|
||||
- 📚 Support for text and file uploads
|
||||
- 🔧 RESTful API with automatic documentation
|
||||
- 🚀 Built with FastAPI for high performance
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- Python 3.8+
|
||||
- OpenAI API key
|
||||
- Required Python packages:
|
||||
- fastapi
|
||||
- uvicorn
|
||||
- lightrag
|
||||
- pydantic
|
||||
- openai
|
||||
- nest-asyncio
|
||||
|
||||
## Installation
|
||||
If you are using Windows, you will need to download and install visual c++ build tools from [https://visualstudio.microsoft.com/visual-cpp-build-tools/](https://visualstudio.microsoft.com/visual-cpp-build-tools/)
|
||||
Make sure you install the VS 2022 C++ x64/x86 Build tools from individual components tab.
|
||||
|
||||
1. Clone the repository:
|
||||
```bash
|
||||
git clone https://github.com/ParisNeo/LightRAG.git
|
||||
cd api
|
||||
```
|
||||
|
||||
2. Install dependencies:
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
3. Set up your OpenAI API key:
|
||||
```bash
|
||||
export OPENAI_API_KEY='your-api-key-here'
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
The server can be configured using command-line arguments:
|
||||
|
||||
```bash
|
||||
python openai_lightrag_server.py --help
|
||||
```
|
||||
|
||||
Available options:
|
||||
|
||||
| Parameter | Default | Description |
|
||||
|-----------|---------|-------------|
|
||||
| --host | 0.0.0.0 | Server host |
|
||||
| --port | 9621 | Server port |
|
||||
| --model | gpt-4 | OpenAI model name |
|
||||
| --embedding-model | text-embedding-3-large | OpenAI embedding model |
|
||||
| --working-dir | ./rag_storage | Working directory for RAG |
|
||||
| --max-tokens | 32768 | Maximum token size |
|
||||
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
||||
| --input-dir | ./inputs | Input directory for documents |
|
||||
| --log-level | INFO | Logging level |
|
||||
|
||||
## Quick Start
|
||||
|
||||
1. Basic usage with default settings:
|
||||
```bash
|
||||
python openai_lightrag_server.py
|
||||
```
|
||||
|
||||
2. Custom configuration:
|
||||
```bash
|
||||
python openai_lightrag_server.py --model gpt-4 --port 8080 --working-dir ./custom_rag
|
||||
```
|
||||
|
||||
## API Endpoints
|
||||
|
||||
### Query Endpoints
|
||||
|
||||
#### POST /query
|
||||
Query the RAG system with options for different search modes.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/query" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"query": "Your question here", "mode": "hybrid"}'
|
||||
```
|
||||
|
||||
#### POST /query/stream
|
||||
Stream responses from the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/query/stream" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"query": "Your question here", "mode": "hybrid"}'
|
||||
```
|
||||
|
||||
### Document Management Endpoints
|
||||
|
||||
#### POST /documents/text
|
||||
Insert text directly into the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/text" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"text": "Your text content here", "description": "Optional description"}'
|
||||
```
|
||||
|
||||
#### POST /documents/file
|
||||
Upload a single file to the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/file" \
|
||||
-F "file=@/path/to/your/document.txt" \
|
||||
-F "description=Optional description"
|
||||
```
|
||||
|
||||
#### POST /documents/batch
|
||||
Upload multiple files at once.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/batch" \
|
||||
-F "files=@/path/to/doc1.txt" \
|
||||
-F "files=@/path/to/doc2.txt"
|
||||
```
|
||||
|
||||
#### DELETE /documents
|
||||
Clear all documents from the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X DELETE "http://localhost:9621/documents"
|
||||
```
|
||||
|
||||
### Utility Endpoints
|
||||
|
||||
#### GET /health
|
||||
Check server health and configuration.
|
||||
|
||||
```bash
|
||||
curl "http://localhost:9621/health"
|
||||
```
|
||||
|
||||
## Development
|
||||
|
||||
### Running in Development Mode
|
||||
|
||||
```bash
|
||||
uvicorn openai_lightrag_server:app --reload --port 9621
|
||||
```
|
||||
|
||||
### API Documentation
|
||||
|
||||
When the server is running, visit:
|
||||
- Swagger UI: http://localhost:9621/docs
|
||||
- ReDoc: http://localhost:9621/redoc
|
||||
|
||||
## License
|
||||
|
||||
This project is licensed under the MIT License - see the LICENSE file for details.
|
||||
|
||||
## Acknowledgments
|
||||
|
||||
- Built with [FastAPI](https://fastapi.tiangolo.com/)
|
||||
- Uses [LightRAG](https://github.com/HKUDS/LightRAG) for document processing
|
||||
- Powered by [OpenAI](https://openai.com/) for language model inference
|
@ -393,9 +393,12 @@ def create_app(args):
|
||||
return app
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
def main():
|
||||
args = parse_args()
|
||||
import uvicorn
|
||||
|
||||
app = create_app(args)
|
||||
uvicorn.run(app, host=args.host, port=args.port)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -393,9 +393,12 @@ def create_app(args):
|
||||
return app
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
def main():
|
||||
args = parse_args()
|
||||
import uvicorn
|
||||
|
||||
app = create_app(args)
|
||||
uvicorn.run(app, host=args.host, port=args.port)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -397,9 +397,12 @@ def create_app(args):
|
||||
return app
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
def main():
|
||||
args = parse_args()
|
||||
import uvicorn
|
||||
|
||||
app = create_app(args)
|
||||
uvicorn.run(app, host=args.host, port=args.port)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
20
setup.py
20
setup.py
@ -52,6 +52,16 @@ def read_requirements():
|
||||
return deps
|
||||
|
||||
|
||||
def read_api_requirements():
|
||||
api_deps = []
|
||||
try:
|
||||
with open("./lightrag/api/requirements.txt") as f:
|
||||
api_deps = [line.strip() for line in f if line.strip()]
|
||||
except FileNotFoundError:
|
||||
print("Warning: API requirements.txt not found.")
|
||||
return api_deps
|
||||
|
||||
|
||||
metadata = retrieve_metadata()
|
||||
long_description = read_long_description()
|
||||
requirements = read_requirements()
|
||||
@ -85,4 +95,14 @@ setuptools.setup(
|
||||
if metadata.get("__url__")
|
||||
else "",
|
||||
},
|
||||
extras_require={
|
||||
"api": read_api_requirements(), # API requirements as optional
|
||||
},
|
||||
entry_points={
|
||||
"console_scripts": [
|
||||
"lollms-lightrag-server=lightrag.api.lollms_lightrag_server:main [api]",
|
||||
"ollama-lightrag-server=lightrag.api.ollama_lightrag_server:main [api]",
|
||||
"openai-lightrag-server=lightrag.api.openai_lightrag_server:main [api]",
|
||||
],
|
||||
},
|
||||
)
|
||||
|
Loading…
x
Reference in New Issue
Block a user