Adding Tongyi OpenAI demo to use Qwen

qwen-turbo-latest (currently Qwen3) is supported by now

Signed-off-by: Ben Luo <bn0418@gmail.com>
This commit is contained in:
Ben Luo 2025-05-04 22:08:03 +08:00
parent ec8e6a1571
commit b8d59a262f

View File

@ -0,0 +1,136 @@
import os
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.utils import EmbeddingFunc
import numpy as np
from dotenv import load_dotenv
import logging
from openai import OpenAI
from lightrag.kg.shared_storage import initialize_pipeline_status
logging.basicConfig(level=logging.INFO)
load_dotenv()
LLM_MODEL = os.environ.get("LLM_MODEL", "qwen-turbo-latest")
LLM_BINDING_HOST = "https://dashscope.aliyuncs.com/compatible-mode/v1"
LLM_BINDING_API_KEY = os.getenv("LLM_BINDING_API_KEY")
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-v3")
EMBEDDING_BINDING_HOST = os.getenv("EMBEDDING_BINDING_HOST", LLM_BINDING_HOST)
EMBEDDING_BINDING_API_KEY = os.getenv("EMBEDDING_BINDING_API_KEY", LLM_BINDING_API_KEY)
EMBEDDING_DIM = int(os.environ.get("EMBEDDING_DIM", 1024))
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
EMBEDDING_MAX_BATCH_SIZE = int(os.environ.get("EMBEDDING_MAX_BATCH_SIZE", 10))
print(f"LLM_MODEL: {LLM_MODEL}")
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
WORKING_DIR = "./dickens"
if os.path.exists(WORKING_DIR):
import shutil
shutil.rmtree(WORKING_DIR)
os.mkdir(WORKING_DIR)
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
client = OpenAI(
api_key=LLM_BINDING_API_KEY,
base_url=LLM_BINDING_HOST,
)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
if history_messages:
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
chat_completion = client.chat.completions.create(
model=LLM_MODEL,
messages=messages,
temperature=kwargs.get("temperature", 0),
top_p=kwargs.get("top_p", 1),
n=kwargs.get("n", 1),
extra_body={"enable_thinking": False},
)
return chat_completion.choices[0].message.content
async def embedding_func(texts: list[str]) -> np.ndarray:
client = OpenAI(
api_key=EMBEDDING_BINDING_API_KEY,
base_url=EMBEDDING_BINDING_HOST,
)
print("##### embedding: texts: %d #####" % len(texts))
max_batch_size = EMBEDDING_MAX_BATCH_SIZE
embeddings = []
for i in range(0, len(texts), max_batch_size):
batch = texts[i : i + max_batch_size]
embedding = client.embeddings.create(model=EMBEDDING_MODEL, input=batch)
embeddings += [item.embedding for item in embedding.data]
return np.array(embeddings)
async def test_funcs():
result = await llm_model_func("How are you?")
print("Resposta do llm_model_func: ", result)
result = await embedding_func(["How are you?"])
print("Resultado do embedding_func: ", result.shape)
print("Dimensão da embedding: ", result.shape[1])
asyncio.run(test_funcs())
async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=EMBEDDING_DIM,
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
func=embedding_func,
),
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
def main():
rag = asyncio.run(initialize_rag())
with open("./book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
query_text = "What are the main themes?"
print("Result (Naive):")
print(rag.query(query_text, param=QueryParam(mode="naive")))
print("\nResult (Local):")
print(rag.query(query_text, param=QueryParam(mode="local")))
print("\nResult (Global):")
print(rag.query(query_text, param=QueryParam(mode="global")))
print("\nResult (Hybrid):")
print(rag.query(query_text, param=QueryParam(mode="hybrid")))
print("\nResult (mix):")
print(rag.query(query_text, param=QueryParam(mode="mix")))
if __name__ == "__main__":
main()