mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-06-26 22:00:19 +00:00
Adding Tongyi OpenAI demo to use Qwen
qwen-turbo-latest (currently Qwen3) is supported by now Signed-off-by: Ben Luo <bn0418@gmail.com>
This commit is contained in:
parent
ec8e6a1571
commit
b8d59a262f
136
examples/lightrag_tongyi_openai_demo.py
Normal file
136
examples/lightrag_tongyi_openai_demo.py
Normal file
@ -0,0 +1,136 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from dotenv import load_dotenv
|
||||
import logging
|
||||
from openai import OpenAI
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
load_dotenv()
|
||||
|
||||
LLM_MODEL = os.environ.get("LLM_MODEL", "qwen-turbo-latest")
|
||||
LLM_BINDING_HOST = "https://dashscope.aliyuncs.com/compatible-mode/v1"
|
||||
LLM_BINDING_API_KEY = os.getenv("LLM_BINDING_API_KEY")
|
||||
|
||||
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-v3")
|
||||
EMBEDDING_BINDING_HOST = os.getenv("EMBEDDING_BINDING_HOST", LLM_BINDING_HOST)
|
||||
EMBEDDING_BINDING_API_KEY = os.getenv("EMBEDDING_BINDING_API_KEY", LLM_BINDING_API_KEY)
|
||||
EMBEDDING_DIM = int(os.environ.get("EMBEDDING_DIM", 1024))
|
||||
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
||||
EMBEDDING_MAX_BATCH_SIZE = int(os.environ.get("EMBEDDING_MAX_BATCH_SIZE", 10))
|
||||
|
||||
print(f"LLM_MODEL: {LLM_MODEL}")
|
||||
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if os.path.exists(WORKING_DIR):
|
||||
import shutil
|
||||
|
||||
shutil.rmtree(WORKING_DIR)
|
||||
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
client = OpenAI(
|
||||
api_key=LLM_BINDING_API_KEY,
|
||||
base_url=LLM_BINDING_HOST,
|
||||
)
|
||||
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
if history_messages:
|
||||
messages.extend(history_messages)
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
chat_completion = client.chat.completions.create(
|
||||
model=LLM_MODEL,
|
||||
messages=messages,
|
||||
temperature=kwargs.get("temperature", 0),
|
||||
top_p=kwargs.get("top_p", 1),
|
||||
n=kwargs.get("n", 1),
|
||||
extra_body={"enable_thinking": False},
|
||||
)
|
||||
return chat_completion.choices[0].message.content
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
client = OpenAI(
|
||||
api_key=EMBEDDING_BINDING_API_KEY,
|
||||
base_url=EMBEDDING_BINDING_HOST,
|
||||
)
|
||||
|
||||
print("##### embedding: texts: %d #####" % len(texts))
|
||||
max_batch_size = EMBEDDING_MAX_BATCH_SIZE
|
||||
embeddings = []
|
||||
for i in range(0, len(texts), max_batch_size):
|
||||
batch = texts[i : i + max_batch_size]
|
||||
embedding = client.embeddings.create(model=EMBEDDING_MODEL, input=batch)
|
||||
embeddings += [item.embedding for item in embedding.data]
|
||||
|
||||
return np.array(embeddings)
|
||||
|
||||
|
||||
async def test_funcs():
|
||||
result = await llm_model_func("How are you?")
|
||||
print("Resposta do llm_model_func: ", result)
|
||||
|
||||
result = await embedding_func(["How are you?"])
|
||||
print("Resultado do embedding_func: ", result.shape)
|
||||
print("Dimensão da embedding: ", result.shape[1])
|
||||
|
||||
|
||||
asyncio.run(test_funcs())
|
||||
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=EMBEDDING_DIM,
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
def main():
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
query_text = "What are the main themes?"
|
||||
|
||||
print("Result (Naive):")
|
||||
print(rag.query(query_text, param=QueryParam(mode="naive")))
|
||||
|
||||
print("\nResult (Local):")
|
||||
print(rag.query(query_text, param=QueryParam(mode="local")))
|
||||
|
||||
print("\nResult (Global):")
|
||||
print(rag.query(query_text, param=QueryParam(mode="global")))
|
||||
|
||||
print("\nResult (Hybrid):")
|
||||
print(rag.query(query_text, param=QueryParam(mode="hybrid")))
|
||||
|
||||
print("\nResult (mix):")
|
||||
print(rag.query(query_text, param=QueryParam(mode="mix")))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user