Fix linting

This commit is contained in:
yangdx 2025-07-05 11:43:45 +08:00
parent 2e2b9f3b48
commit bdfd2d53c7
3 changed files with 18 additions and 20 deletions

View File

@ -820,7 +820,7 @@ rag = LightRAG(
create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties);
ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx;
-- 如有必要可以删除
drop INDEX entity_p_idx;
drop INDEX vertex_p_idx;
@ -1166,17 +1166,17 @@ LightRAG 现已与 [RAG-Anything](https://github.com/HKUDS/RAG-Anything) 实现
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
from lightrag.utils import EmbeddingFunc
import os
async def load_existing_lightrag():
# 首先,创建或加载现有的 LightRAG 实例
lightrag_working_dir = "./existing_lightrag_storage"
# 检查是否存在之前的 LightRAG 实例
if os.path.exists(lightrag_working_dir) and os.listdir(lightrag_working_dir):
print("✅ Found existing LightRAG instance, loading...")
else:
print("❌ No existing LightRAG instance found, will create new one")
# 使用您的配置创建/加载 LightRAG 实例
lightrag_instance = LightRAG(
working_dir=lightrag_working_dir,
@ -1199,10 +1199,10 @@ LightRAG 现已与 [RAG-Anything](https://github.com/HKUDS/RAG-Anything) 实现
),
)
)
# 初始化存储(如果有现有数据,这将加载现有数据)
await lightrag_instance.initialize_storages()
# 现在使用现有的 LightRAG 实例初始化 RAGAnything
rag = RAGAnything(
lightrag=lightrag_instance, # 传递现有的 LightRAG 实例
@ -1231,20 +1231,20 @@ LightRAG 现已与 [RAG-Anything](https://github.com/HKUDS/RAG-Anything) 实现
)
# 注意working_dir、llm_model_func、embedding_func 等都从 lightrag_instance 继承
)
# 查询现有的知识库
result = await rag.query_with_multimodal(
"What data has been processed in this LightRAG instance?",
mode="hybrid"
)
print("Query result:", result)
# 向现有的 LightRAG 实例添加新的多模态文档
await rag.process_document_complete(
file_path="path/to/new/multimodal_document.pdf",
output_dir="./output"
)
if __name__ == "__main__":
asyncio.run(load_existing_lightrag())
```

View File

@ -792,7 +792,7 @@ For production level scenarios you will most likely want to leverage an enterpri
create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties);
ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx;
-- drop if necessary
drop INDEX entity_p_idx;
drop INDEX vertex_p_idx;
@ -1180,17 +1180,17 @@ LightRAG now seamlessly integrates with [RAG-Anything](https://github.com/HKUDS/
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
from lightrag.utils import EmbeddingFunc
import os
async def load_existing_lightrag():
# First, create or load an existing LightRAG instance
lightrag_working_dir = "./existing_lightrag_storage"
# Check if previous LightRAG instance exists
if os.path.exists(lightrag_working_dir) and os.listdir(lightrag_working_dir):
print("✅ Found existing LightRAG instance, loading...")
else:
print("❌ No existing LightRAG instance found, will create new one")
# Create/Load LightRAG instance with your configurations
lightrag_instance = LightRAG(
working_dir=lightrag_working_dir,
@ -1213,10 +1213,10 @@ LightRAG now seamlessly integrates with [RAG-Anything](https://github.com/HKUDS/
),
)
)
# Initialize storage (this will load existing data if available)
await lightrag_instance.initialize_storages()
# Now initialize RAGAnything with the existing LightRAG instance
rag = RAGAnything(
lightrag=lightrag_instance, # Pass the existing LightRAG instance
@ -1245,20 +1245,20 @@ LightRAG now seamlessly integrates with [RAG-Anything](https://github.com/HKUDS/
)
# Note: working_dir, llm_model_func, embedding_func, etc. are inherited from lightrag_instance
)
# Query the existing knowledge base
result = await rag.query_with_multimodal(
"What data has been processed in this LightRAG instance?",
mode="hybrid"
)
print("Query result:", result)
# Add new multimodal documents to the existing LightRAG instance
await rag.process_document_complete(
file_path="path/to/new/multimodal_document.pdf",
output_dir="./output"
)
if __name__ == "__main__":
asyncio.run(load_existing_lightrag())
```

View File

@ -4,9 +4,7 @@ import asyncio
from typing import Any, final
import json
import numpy as np
from dataclasses import dataclass
import pipmaster as pm
from lightrag.utils import logger, compute_mdhash_id
from lightrag.base import BaseVectorStorage