diff --git a/README-zh.md b/README-zh.md index 07c1375a..34fece43 100644 --- a/README-zh.md +++ b/README-zh.md @@ -820,7 +820,7 @@ rag = LightRAG( create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype)); CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties); ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx; - + -- 如有必要可以删除 drop INDEX entity_p_idx; drop INDEX vertex_p_idx; @@ -1166,17 +1166,17 @@ LightRAG 现已与 [RAG-Anything](https://github.com/HKUDS/RAG-Anything) 实现 from lightrag.llm.openai import openai_complete_if_cache, openai_embed from lightrag.utils import EmbeddingFunc import os - + async def load_existing_lightrag(): # 首先,创建或加载现有的 LightRAG 实例 lightrag_working_dir = "./existing_lightrag_storage" - + # 检查是否存在之前的 LightRAG 实例 if os.path.exists(lightrag_working_dir) and os.listdir(lightrag_working_dir): print("✅ Found existing LightRAG instance, loading...") else: print("❌ No existing LightRAG instance found, will create new one") - + # 使用您的配置创建/加载 LightRAG 实例 lightrag_instance = LightRAG( working_dir=lightrag_working_dir, @@ -1199,10 +1199,10 @@ LightRAG 现已与 [RAG-Anything](https://github.com/HKUDS/RAG-Anything) 实现 ), ) ) - + # 初始化存储(如果有现有数据,这将加载现有数据) await lightrag_instance.initialize_storages() - + # 现在使用现有的 LightRAG 实例初始化 RAGAnything rag = RAGAnything( lightrag=lightrag_instance, # 传递现有的 LightRAG 实例 @@ -1231,20 +1231,20 @@ LightRAG 现已与 [RAG-Anything](https://github.com/HKUDS/RAG-Anything) 实现 ) # 注意:working_dir、llm_model_func、embedding_func 等都从 lightrag_instance 继承 ) - + # 查询现有的知识库 result = await rag.query_with_multimodal( "What data has been processed in this LightRAG instance?", mode="hybrid" ) print("Query result:", result) - + # 向现有的 LightRAG 实例添加新的多模态文档 await rag.process_document_complete( file_path="path/to/new/multimodal_document.pdf", output_dir="./output" ) - + if __name__ == "__main__": asyncio.run(load_existing_lightrag()) ``` diff --git a/README.md b/README.md index f6fffdf5..9cf0164e 100644 --- a/README.md +++ b/README.md @@ -792,7 +792,7 @@ For production level scenarios you will most likely want to leverage an enterpri create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype)); CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties); ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx; - + -- drop if necessary drop INDEX entity_p_idx; drop INDEX vertex_p_idx; @@ -1180,17 +1180,17 @@ LightRAG now seamlessly integrates with [RAG-Anything](https://github.com/HKUDS/ from lightrag.llm.openai import openai_complete_if_cache, openai_embed from lightrag.utils import EmbeddingFunc import os - + async def load_existing_lightrag(): # First, create or load an existing LightRAG instance lightrag_working_dir = "./existing_lightrag_storage" - + # Check if previous LightRAG instance exists if os.path.exists(lightrag_working_dir) and os.listdir(lightrag_working_dir): print("✅ Found existing LightRAG instance, loading...") else: print("❌ No existing LightRAG instance found, will create new one") - + # Create/Load LightRAG instance with your configurations lightrag_instance = LightRAG( working_dir=lightrag_working_dir, @@ -1213,10 +1213,10 @@ LightRAG now seamlessly integrates with [RAG-Anything](https://github.com/HKUDS/ ), ) ) - + # Initialize storage (this will load existing data if available) await lightrag_instance.initialize_storages() - + # Now initialize RAGAnything with the existing LightRAG instance rag = RAGAnything( lightrag=lightrag_instance, # Pass the existing LightRAG instance @@ -1245,20 +1245,20 @@ LightRAG now seamlessly integrates with [RAG-Anything](https://github.com/HKUDS/ ) # Note: working_dir, llm_model_func, embedding_func, etc. are inherited from lightrag_instance ) - + # Query the existing knowledge base result = await rag.query_with_multimodal( "What data has been processed in this LightRAG instance?", mode="hybrid" ) print("Query result:", result) - + # Add new multimodal documents to the existing LightRAG instance await rag.process_document_complete( file_path="path/to/new/multimodal_document.pdf", output_dir="./output" ) - + if __name__ == "__main__": asyncio.run(load_existing_lightrag()) ``` diff --git a/lightrag/kg/faiss_impl.py b/lightrag/kg/faiss_impl.py index 62f3663f..af691458 100644 --- a/lightrag/kg/faiss_impl.py +++ b/lightrag/kg/faiss_impl.py @@ -4,9 +4,7 @@ import asyncio from typing import Any, final import json import numpy as np - from dataclasses import dataclass -import pipmaster as pm from lightrag.utils import logger, compute_mdhash_id from lightrag.base import BaseVectorStorage