Fix linting

This commit is contained in:
yangdx 2025-07-05 11:43:45 +08:00
parent 2e2b9f3b48
commit bdfd2d53c7
3 changed files with 18 additions and 20 deletions

View File

@ -820,7 +820,7 @@ rag = LightRAG(
create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype)); create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties); CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties);
ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx; ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx;
-- 如有必要可以删除 -- 如有必要可以删除
drop INDEX entity_p_idx; drop INDEX entity_p_idx;
drop INDEX vertex_p_idx; drop INDEX vertex_p_idx;
@ -1166,17 +1166,17 @@ LightRAG 现已与 [RAG-Anything](https://github.com/HKUDS/RAG-Anything) 实现
from lightrag.llm.openai import openai_complete_if_cache, openai_embed from lightrag.llm.openai import openai_complete_if_cache, openai_embed
from lightrag.utils import EmbeddingFunc from lightrag.utils import EmbeddingFunc
import os import os
async def load_existing_lightrag(): async def load_existing_lightrag():
# 首先,创建或加载现有的 LightRAG 实例 # 首先,创建或加载现有的 LightRAG 实例
lightrag_working_dir = "./existing_lightrag_storage" lightrag_working_dir = "./existing_lightrag_storage"
# 检查是否存在之前的 LightRAG 实例 # 检查是否存在之前的 LightRAG 实例
if os.path.exists(lightrag_working_dir) and os.listdir(lightrag_working_dir): if os.path.exists(lightrag_working_dir) and os.listdir(lightrag_working_dir):
print("✅ Found existing LightRAG instance, loading...") print("✅ Found existing LightRAG instance, loading...")
else: else:
print("❌ No existing LightRAG instance found, will create new one") print("❌ No existing LightRAG instance found, will create new one")
# 使用您的配置创建/加载 LightRAG 实例 # 使用您的配置创建/加载 LightRAG 实例
lightrag_instance = LightRAG( lightrag_instance = LightRAG(
working_dir=lightrag_working_dir, working_dir=lightrag_working_dir,
@ -1199,10 +1199,10 @@ LightRAG 现已与 [RAG-Anything](https://github.com/HKUDS/RAG-Anything) 实现
), ),
) )
) )
# 初始化存储(如果有现有数据,这将加载现有数据) # 初始化存储(如果有现有数据,这将加载现有数据)
await lightrag_instance.initialize_storages() await lightrag_instance.initialize_storages()
# 现在使用现有的 LightRAG 实例初始化 RAGAnything # 现在使用现有的 LightRAG 实例初始化 RAGAnything
rag = RAGAnything( rag = RAGAnything(
lightrag=lightrag_instance, # 传递现有的 LightRAG 实例 lightrag=lightrag_instance, # 传递现有的 LightRAG 实例
@ -1231,20 +1231,20 @@ LightRAG 现已与 [RAG-Anything](https://github.com/HKUDS/RAG-Anything) 实现
) )
# 注意working_dir、llm_model_func、embedding_func 等都从 lightrag_instance 继承 # 注意working_dir、llm_model_func、embedding_func 等都从 lightrag_instance 继承
) )
# 查询现有的知识库 # 查询现有的知识库
result = await rag.query_with_multimodal( result = await rag.query_with_multimodal(
"What data has been processed in this LightRAG instance?", "What data has been processed in this LightRAG instance?",
mode="hybrid" mode="hybrid"
) )
print("Query result:", result) print("Query result:", result)
# 向现有的 LightRAG 实例添加新的多模态文档 # 向现有的 LightRAG 实例添加新的多模态文档
await rag.process_document_complete( await rag.process_document_complete(
file_path="path/to/new/multimodal_document.pdf", file_path="path/to/new/multimodal_document.pdf",
output_dir="./output" output_dir="./output"
) )
if __name__ == "__main__": if __name__ == "__main__":
asyncio.run(load_existing_lightrag()) asyncio.run(load_existing_lightrag())
``` ```

View File

@ -792,7 +792,7 @@ For production level scenarios you will most likely want to leverage an enterpri
create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype)); create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties); CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties);
ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx; ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx;
-- drop if necessary -- drop if necessary
drop INDEX entity_p_idx; drop INDEX entity_p_idx;
drop INDEX vertex_p_idx; drop INDEX vertex_p_idx;
@ -1180,17 +1180,17 @@ LightRAG now seamlessly integrates with [RAG-Anything](https://github.com/HKUDS/
from lightrag.llm.openai import openai_complete_if_cache, openai_embed from lightrag.llm.openai import openai_complete_if_cache, openai_embed
from lightrag.utils import EmbeddingFunc from lightrag.utils import EmbeddingFunc
import os import os
async def load_existing_lightrag(): async def load_existing_lightrag():
# First, create or load an existing LightRAG instance # First, create or load an existing LightRAG instance
lightrag_working_dir = "./existing_lightrag_storage" lightrag_working_dir = "./existing_lightrag_storage"
# Check if previous LightRAG instance exists # Check if previous LightRAG instance exists
if os.path.exists(lightrag_working_dir) and os.listdir(lightrag_working_dir): if os.path.exists(lightrag_working_dir) and os.listdir(lightrag_working_dir):
print("✅ Found existing LightRAG instance, loading...") print("✅ Found existing LightRAG instance, loading...")
else: else:
print("❌ No existing LightRAG instance found, will create new one") print("❌ No existing LightRAG instance found, will create new one")
# Create/Load LightRAG instance with your configurations # Create/Load LightRAG instance with your configurations
lightrag_instance = LightRAG( lightrag_instance = LightRAG(
working_dir=lightrag_working_dir, working_dir=lightrag_working_dir,
@ -1213,10 +1213,10 @@ LightRAG now seamlessly integrates with [RAG-Anything](https://github.com/HKUDS/
), ),
) )
) )
# Initialize storage (this will load existing data if available) # Initialize storage (this will load existing data if available)
await lightrag_instance.initialize_storages() await lightrag_instance.initialize_storages()
# Now initialize RAGAnything with the existing LightRAG instance # Now initialize RAGAnything with the existing LightRAG instance
rag = RAGAnything( rag = RAGAnything(
lightrag=lightrag_instance, # Pass the existing LightRAG instance lightrag=lightrag_instance, # Pass the existing LightRAG instance
@ -1245,20 +1245,20 @@ LightRAG now seamlessly integrates with [RAG-Anything](https://github.com/HKUDS/
) )
# Note: working_dir, llm_model_func, embedding_func, etc. are inherited from lightrag_instance # Note: working_dir, llm_model_func, embedding_func, etc. are inherited from lightrag_instance
) )
# Query the existing knowledge base # Query the existing knowledge base
result = await rag.query_with_multimodal( result = await rag.query_with_multimodal(
"What data has been processed in this LightRAG instance?", "What data has been processed in this LightRAG instance?",
mode="hybrid" mode="hybrid"
) )
print("Query result:", result) print("Query result:", result)
# Add new multimodal documents to the existing LightRAG instance # Add new multimodal documents to the existing LightRAG instance
await rag.process_document_complete( await rag.process_document_complete(
file_path="path/to/new/multimodal_document.pdf", file_path="path/to/new/multimodal_document.pdf",
output_dir="./output" output_dir="./output"
) )
if __name__ == "__main__": if __name__ == "__main__":
asyncio.run(load_existing_lightrag()) asyncio.run(load_existing_lightrag())
``` ```

View File

@ -4,9 +4,7 @@ import asyncio
from typing import Any, final from typing import Any, final
import json import json
import numpy as np import numpy as np
from dataclasses import dataclass from dataclasses import dataclass
import pipmaster as pm
from lightrag.utils import logger, compute_mdhash_id from lightrag.utils import logger, compute_mdhash_id
from lightrag.base import BaseVectorStorage from lightrag.base import BaseVectorStorage