diff --git a/README-zh.md b/README-zh.md index 8b377e0e..9f7f314e 100644 --- a/README-zh.md +++ b/README-zh.md @@ -242,7 +242,6 @@ if __name__ == "__main__": | **tokenizer** | `Tokenizer` | 用于将文本转换为 tokens(数字)以及使用遵循 TokenizerInterface 协议的 .encode() 和 .decode() 函数将 tokens 转换回文本的函数。 如果您不指定,它将使用默认的 Tiktoken tokenizer。 | `TiktokenTokenizer` | | **tiktoken_model_name** | `str` | 如果您使用的是默认的 Tiktoken tokenizer,那么这是要使用的特定 Tiktoken 模型的名称。如果您提供自己的 tokenizer,则忽略此设置。 | `gpt-4o-mini` | | **entity_extract_max_gleaning** | `int` | 实体提取过程中的循环次数,附加历史消息 | `1` | -| **entity_summary_to_max_tokens** | `int` | 每个实体摘要的最大令牌大小 | `500` | | **node_embedding_algorithm** | `str` | 节点嵌入算法(当前未使用) | `node2vec` | | **node2vec_params** | `dict` | 节点嵌入的参数 | `{"dimensions": 1536,"num_walks": 10,"walk_length": 40,"window_size": 2,"iterations": 3,"random_seed": 3,}` | | **embedding_func** | `EmbeddingFunc` | 从文本生成嵌入向量的函数 | `openai_embed` | diff --git a/README.md b/README.md index 5d8a642f..fa2b5924 100644 --- a/README.md +++ b/README.md @@ -249,7 +249,6 @@ A full list of LightRAG init parameters: | **tokenizer** | `Tokenizer` | The function used to convert text into tokens (numbers) and back using .encode() and .decode() functions following `TokenizerInterface` protocol. If you don't specify one, it will use the default Tiktoken tokenizer. | `TiktokenTokenizer` | | **tiktoken_model_name** | `str` | If you're using the default Tiktoken tokenizer, this is the name of the specific Tiktoken model to use. This setting is ignored if you provide your own tokenizer. | `gpt-4o-mini` | | **entity_extract_max_gleaning** | `int` | Number of loops in the entity extraction process, appending history messages | `1` | -| **entity_summary_to_max_tokens** | `int` | Maximum token size for each entity summary | `500` | | **node_embedding_algorithm** | `str` | Algorithm for node embedding (currently not used) | `node2vec` | | **node2vec_params** | `dict` | Parameters for node embedding | `{"dimensions": 1536,"num_walks": 10,"walk_length": 40,"window_size": 2,"iterations": 3,"random_seed": 3,}` | | **embedding_func** | `EmbeddingFunc` | Function to generate embedding vectors from text | `openai_embed` | diff --git a/env.example b/env.example index f8f6d614..828c6d24 100644 --- a/env.example +++ b/env.example @@ -72,8 +72,6 @@ OLLAMA_EMULATING_MODEL_TAG=latest SUMMARY_LANGUAGE=English ### Number of duplicated entities/edges to trigger LLM re-summary on merge ( at least 3 is recommented) # FORCE_LLM_SUMMARY_ON_MERGE=6 -### Max tokens for entity/relations description after merge -# MAX_TOKEN_SUMMARY=500 ### Maximum number of entity extraction attempts for ambiguous content # MAX_GLEANING=1 diff --git a/lightrag/api/utils_api.py b/lightrag/api/utils_api.py index a724069d..b7099bb3 100644 --- a/lightrag/api/utils_api.py +++ b/lightrag/api/utils_api.py @@ -10,7 +10,6 @@ from ascii_colors import ASCIIColors from lightrag.api import __api_version__ as api_version from lightrag import __version__ as core_version from lightrag.constants import ( - DEFAULT_MAX_TOKEN_SUMMARY, DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE, ) from fastapi import HTTPException, Security, Request, status @@ -280,9 +279,6 @@ def display_splash_screen(args: argparse.Namespace) -> None: ASCIIColors.white(" ├─ Top-K: ", end="") ASCIIColors.yellow(f"{args.top_k}") ASCIIColors.white(" ├─ Max Token Summary: ", end="") - ASCIIColors.yellow( - f"{get_env_value('MAX_TOKEN_SUMMARY', DEFAULT_MAX_TOKEN_SUMMARY, int)}" - ) ASCIIColors.white(" └─ Force LLM Summary on Merge: ", end="") ASCIIColors.yellow( f"{get_env_value('FORCE_LLM_SUMMARY_ON_MERGE', DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE, int)}" diff --git a/lightrag/constants.py b/lightrag/constants.py index 82451a36..c3fd6531 100644 --- a/lightrag/constants.py +++ b/lightrag/constants.py @@ -8,8 +8,7 @@ consistency and makes maintenance easier. # Default values for environment variables DEFAULT_MAX_GLEANING = 1 -DEFAULT_MAX_TOKEN_SUMMARY = 500 -DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE = 6 +DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE = 4 DEFAULT_WOKERS = 2 DEFAULT_TIMEOUT = 150 diff --git a/lightrag/lightrag.py b/lightrag/lightrag.py index b6cca32a..6ee61e2d 100644 --- a/lightrag/lightrag.py +++ b/lightrag/lightrag.py @@ -23,7 +23,6 @@ from typing import ( ) from lightrag.constants import ( DEFAULT_MAX_GLEANING, - DEFAULT_MAX_TOKEN_SUMMARY, DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE, ) from lightrag.utils import get_env_value @@ -134,10 +133,6 @@ class LightRAG: ) """Maximum number of entity extraction attempts for ambiguous content.""" - summary_to_max_tokens: int = field( - default=get_env_value("MAX_TOKEN_SUMMARY", DEFAULT_MAX_TOKEN_SUMMARY, int) - ) - force_llm_summary_on_merge: int = field( default=get_env_value( "FORCE_LLM_SUMMARY_ON_MERGE", DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE, int diff --git a/lightrag/operate.py b/lightrag/operate.py index 49de3c71..4bf579d1 100644 --- a/lightrag/operate.py +++ b/lightrag/operate.py @@ -118,7 +118,6 @@ async def _handle_entity_relation_summary( tokenizer: Tokenizer = global_config["tokenizer"] llm_max_tokens = global_config["llm_model_max_token_size"] - # summary_max_tokens = global_config["summary_to_max_tokens"] language = global_config["addon_params"].get( "language", PROMPTS["DEFAULT_LANGUAGE"]