mirror of
				https://github.com/HKUDS/LightRAG.git
				synced 2025-11-03 19:29:38 +00:00 
			
		
		
		
	Merge pull request #729 from ArnoChenFx/add-namespace-prefix
add namespace prefix to storage namespaces
This commit is contained in:
		
						commit
						e787d92a0c
					
				@ -40,7 +40,7 @@ from .ollama_api import (
 | 
			
		||||
from .ollama_api import ollama_server_infos
 | 
			
		||||
 | 
			
		||||
# Load environment variables
 | 
			
		||||
load_dotenv()
 | 
			
		||||
load_dotenv(override=True)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class RAGStorageConfig:
 | 
			
		||||
@ -532,6 +532,14 @@ def parse_args() -> argparse.Namespace:
 | 
			
		||||
        help="Number of conversation history turns to include (default: from env or 3)",
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Namespace
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--namespace-prefix",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default=get_env_value("NAMESPACE_PREFIX", ""),
 | 
			
		||||
        help="Prefix of the namespace",
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name
 | 
			
		||||
@ -861,6 +869,8 @@ def create_app(args):
 | 
			
		||||
                "similarity_threshold": 0.95,
 | 
			
		||||
                "use_llm_check": False,
 | 
			
		||||
            },
 | 
			
		||||
            log_level=args.log_level,
 | 
			
		||||
            namespace_prefix=args.namespace_prefix,
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        rag = LightRAG(
 | 
			
		||||
@ -890,6 +900,8 @@ def create_app(args):
 | 
			
		||||
                "similarity_threshold": 0.95,
 | 
			
		||||
                "use_llm_check": False,
 | 
			
		||||
            },
 | 
			
		||||
            log_level=args.log_level,
 | 
			
		||||
            namespace_prefix=args.namespace_prefix,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    async def index_file(file_path: Union[str, Path]) -> None:
 | 
			
		||||
 | 
			
		||||
@ -15,7 +15,7 @@ from dotenv import load_dotenv
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Load environment variables
 | 
			
		||||
load_dotenv()
 | 
			
		||||
load_dotenv(override=True)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class OllamaServerInfos:
 | 
			
		||||
 | 
			
		||||
@ -52,7 +52,7 @@ class MongoKVStorage(BaseKVStorage):
 | 
			
		||||
        return set([s for s in data if s not in existing_ids])
 | 
			
		||||
 | 
			
		||||
    async def upsert(self, data: dict[str, dict]):
 | 
			
		||||
        if self.namespace == "llm_response_cache":
 | 
			
		||||
        if self.namespace.endswith("llm_response_cache"):
 | 
			
		||||
            for mode, items in data.items():
 | 
			
		||||
                for k, v in tqdm_async(items.items(), desc="Upserting"):
 | 
			
		||||
                    key = f"{mode}_{k}"
 | 
			
		||||
@ -69,7 +69,7 @@ class MongoKVStorage(BaseKVStorage):
 | 
			
		||||
        return data
 | 
			
		||||
 | 
			
		||||
    async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
 | 
			
		||||
        if "llm_response_cache" == self.namespace:
 | 
			
		||||
        if self.namespace.endswith("llm_response_cache"):
 | 
			
		||||
            res = {}
 | 
			
		||||
            v = self._data.find_one({"_id": mode + "_" + id})
 | 
			
		||||
            if v:
 | 
			
		||||
 | 
			
		||||
@ -185,7 +185,7 @@ class OracleKVStorage(BaseKVStorage):
 | 
			
		||||
        SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
 | 
			
		||||
        params = {"workspace": self.db.workspace, "id": id}
 | 
			
		||||
        # print("get_by_id:"+SQL)
 | 
			
		||||
        if "llm_response_cache" == self.namespace:
 | 
			
		||||
        if self.namespace.endswith("llm_response_cache"):
 | 
			
		||||
            array_res = await self.db.query(SQL, params, multirows=True)
 | 
			
		||||
            res = {}
 | 
			
		||||
            for row in array_res:
 | 
			
		||||
@ -201,7 +201,7 @@ class OracleKVStorage(BaseKVStorage):
 | 
			
		||||
        """Specifically for llm_response_cache."""
 | 
			
		||||
        SQL = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
 | 
			
		||||
        params = {"workspace": self.db.workspace, "cache_mode": mode, "id": id}
 | 
			
		||||
        if "llm_response_cache" == self.namespace:
 | 
			
		||||
        if self.namespace.endswith("llm_response_cache"):
 | 
			
		||||
            array_res = await self.db.query(SQL, params, multirows=True)
 | 
			
		||||
            res = {}
 | 
			
		||||
            for row in array_res:
 | 
			
		||||
@ -218,7 +218,7 @@ class OracleKVStorage(BaseKVStorage):
 | 
			
		||||
        params = {"workspace": self.db.workspace}
 | 
			
		||||
        # print("get_by_ids:"+SQL)
 | 
			
		||||
        res = await self.db.query(SQL, params, multirows=True)
 | 
			
		||||
        if "llm_response_cache" == self.namespace:
 | 
			
		||||
        if self.namespace.endswith("llm_response_cache"):
 | 
			
		||||
            modes = set()
 | 
			
		||||
            dict_res: dict[str, dict] = {}
 | 
			
		||||
            for row in res:
 | 
			
		||||
@ -269,7 +269,7 @@ class OracleKVStorage(BaseKVStorage):
 | 
			
		||||
 | 
			
		||||
    ################ INSERT METHODS ################
 | 
			
		||||
    async def upsert(self, data: dict[str, dict]):
 | 
			
		||||
        if self.namespace == "text_chunks":
 | 
			
		||||
        if self.namespace.endswith("text_chunks"):
 | 
			
		||||
            list_data = [
 | 
			
		||||
                {
 | 
			
		||||
                    "id": k,
 | 
			
		||||
@ -302,7 +302,7 @@ class OracleKVStorage(BaseKVStorage):
 | 
			
		||||
                    "status": item["status"],
 | 
			
		||||
                }
 | 
			
		||||
                await self.db.execute(merge_sql, _data)
 | 
			
		||||
        if self.namespace == "full_docs":
 | 
			
		||||
        if self.namespace.endswith("full_docs"):
 | 
			
		||||
            for k, v in data.items():
 | 
			
		||||
                # values.clear()
 | 
			
		||||
                merge_sql = SQL_TEMPLATES["merge_doc_full"]
 | 
			
		||||
@ -313,7 +313,7 @@ class OracleKVStorage(BaseKVStorage):
 | 
			
		||||
                }
 | 
			
		||||
                await self.db.execute(merge_sql, _data)
 | 
			
		||||
 | 
			
		||||
        if self.namespace == "llm_response_cache":
 | 
			
		||||
        if self.namespace.endswith("llm_response_cache"):
 | 
			
		||||
            for mode, items in data.items():
 | 
			
		||||
                for k, v in items.items():
 | 
			
		||||
                    upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
 | 
			
		||||
@ -334,8 +334,10 @@ class OracleKVStorage(BaseKVStorage):
 | 
			
		||||
        await self.db.execute(SQL, params)
 | 
			
		||||
 | 
			
		||||
    async def index_done_callback(self):
 | 
			
		||||
        if self.namespace in ["full_docs", "text_chunks"]:
 | 
			
		||||
            logger.info("full doc and chunk data had been saved into oracle db!")
 | 
			
		||||
        for n in ("full_docs", "text_chunks"):
 | 
			
		||||
            if self.namespace.endswith(n):
 | 
			
		||||
                logger.info("full doc and chunk data had been saved into oracle db!")
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
 | 
			
		||||
@ -187,7 +187,7 @@ class PGKVStorage(BaseKVStorage):
 | 
			
		||||
        """Get doc_full data by id."""
 | 
			
		||||
        sql = SQL_TEMPLATES["get_by_id_" + self.namespace]
 | 
			
		||||
        params = {"workspace": self.db.workspace, "id": id}
 | 
			
		||||
        if "llm_response_cache" == self.namespace:
 | 
			
		||||
        if self.namespace.endswith("llm_response_cache"):
 | 
			
		||||
            array_res = await self.db.query(sql, params, multirows=True)
 | 
			
		||||
            res = {}
 | 
			
		||||
            for row in array_res:
 | 
			
		||||
@ -203,7 +203,7 @@ class PGKVStorage(BaseKVStorage):
 | 
			
		||||
        """Specifically for llm_response_cache."""
 | 
			
		||||
        sql = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
 | 
			
		||||
        params = {"workspace": self.db.workspace, mode: mode, "id": id}
 | 
			
		||||
        if "llm_response_cache" == self.namespace:
 | 
			
		||||
        if self.namespace.endswith("llm_response_cache"):
 | 
			
		||||
            array_res = await self.db.query(sql, params, multirows=True)
 | 
			
		||||
            res = {}
 | 
			
		||||
            for row in array_res:
 | 
			
		||||
@ -219,7 +219,7 @@ class PGKVStorage(BaseKVStorage):
 | 
			
		||||
            ids=",".join([f"'{id}'" for id in ids])
 | 
			
		||||
        )
 | 
			
		||||
        params = {"workspace": self.db.workspace}
 | 
			
		||||
        if "llm_response_cache" == self.namespace:
 | 
			
		||||
        if self.namespace.endswith("llm_response_cache"):
 | 
			
		||||
            array_res = await self.db.query(sql, params, multirows=True)
 | 
			
		||||
            modes = set()
 | 
			
		||||
            dict_res: dict[str, dict] = {}
 | 
			
		||||
@ -239,7 +239,7 @@ class PGKVStorage(BaseKVStorage):
 | 
			
		||||
            return None
 | 
			
		||||
 | 
			
		||||
    async def all_keys(self) -> list[dict]:
 | 
			
		||||
        if "llm_response_cache" == self.namespace:
 | 
			
		||||
        if self.namespace.endswith("llm_response_cache"):
 | 
			
		||||
            sql = "select workspace,mode,id from lightrag_llm_cache"
 | 
			
		||||
            res = await self.db.query(sql, multirows=True)
 | 
			
		||||
            return res
 | 
			
		||||
@ -270,9 +270,9 @@ class PGKVStorage(BaseKVStorage):
 | 
			
		||||
 | 
			
		||||
    ################ INSERT METHODS ################
 | 
			
		||||
    async def upsert(self, data: Dict[str, dict]):
 | 
			
		||||
        if self.namespace == "text_chunks":
 | 
			
		||||
        if self.namespace.endswith("text_chunks"):
 | 
			
		||||
            pass
 | 
			
		||||
        elif self.namespace == "full_docs":
 | 
			
		||||
        elif self.namespace.endswith("full_docs"):
 | 
			
		||||
            for k, v in data.items():
 | 
			
		||||
                upsert_sql = SQL_TEMPLATES["upsert_doc_full"]
 | 
			
		||||
                _data = {
 | 
			
		||||
@ -281,7 +281,7 @@ class PGKVStorage(BaseKVStorage):
 | 
			
		||||
                    "workspace": self.db.workspace,
 | 
			
		||||
                }
 | 
			
		||||
                await self.db.execute(upsert_sql, _data)
 | 
			
		||||
        elif self.namespace == "llm_response_cache":
 | 
			
		||||
        elif self.namespace.endswith("llm_response_cache"):
 | 
			
		||||
            for mode, items in data.items():
 | 
			
		||||
                for k, v in items.items():
 | 
			
		||||
                    upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
 | 
			
		||||
@ -296,8 +296,12 @@ class PGKVStorage(BaseKVStorage):
 | 
			
		||||
                    await self.db.execute(upsert_sql, _data)
 | 
			
		||||
 | 
			
		||||
    async def index_done_callback(self):
 | 
			
		||||
        if self.namespace in ["full_docs", "text_chunks"]:
 | 
			
		||||
            logger.info("full doc and chunk data had been saved into postgresql db!")
 | 
			
		||||
        for n in ("full_docs", "text_chunks"):
 | 
			
		||||
            if self.namespace.endswith(n):
 | 
			
		||||
                logger.info(
 | 
			
		||||
                    "full doc and chunk data had been saved into postgresql db!"
 | 
			
		||||
                )
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
@ -389,11 +393,11 @@ class PGVectorStorage(BaseVectorStorage):
 | 
			
		||||
        for i, d in enumerate(list_data):
 | 
			
		||||
            d["__vector__"] = embeddings[i]
 | 
			
		||||
        for item in list_data:
 | 
			
		||||
            if self.namespace == "chunks":
 | 
			
		||||
            if self.namespace.endswith("chunks"):
 | 
			
		||||
                upsert_sql, data = self._upsert_chunks(item)
 | 
			
		||||
            elif self.namespace == "entities":
 | 
			
		||||
            elif self.namespace.endswith("entities"):
 | 
			
		||||
                upsert_sql, data = self._upsert_entities(item)
 | 
			
		||||
            elif self.namespace == "relationships":
 | 
			
		||||
            elif self.namespace.endswith("relationships"):
 | 
			
		||||
                upsert_sql, data = self._upsert_relationships(item)
 | 
			
		||||
            else:
 | 
			
		||||
                raise ValueError(f"{self.namespace} is not supported")
 | 
			
		||||
 | 
			
		||||
@ -160,7 +160,7 @@ class TiDBKVStorage(BaseKVStorage):
 | 
			
		||||
    async def upsert(self, data: dict[str, dict]):
 | 
			
		||||
        left_data = {k: v for k, v in data.items() if k not in self._data}
 | 
			
		||||
        self._data.update(left_data)
 | 
			
		||||
        if self.namespace == "text_chunks":
 | 
			
		||||
        if self.namespace.endswith("text_chunks"):
 | 
			
		||||
            list_data = [
 | 
			
		||||
                {
 | 
			
		||||
                    "__id__": k,
 | 
			
		||||
@ -190,13 +190,13 @@ class TiDBKVStorage(BaseKVStorage):
 | 
			
		||||
                        "tokens": item["tokens"],
 | 
			
		||||
                        "chunk_order_index": item["chunk_order_index"],
 | 
			
		||||
                        "full_doc_id": item["full_doc_id"],
 | 
			
		||||
                        "content_vector": f"{item["__vector__"].tolist()}",
 | 
			
		||||
                        "content_vector": f"{item['__vector__'].tolist()}",
 | 
			
		||||
                        "workspace": self.db.workspace,
 | 
			
		||||
                    }
 | 
			
		||||
                )
 | 
			
		||||
            await self.db.execute(merge_sql, data)
 | 
			
		||||
 | 
			
		||||
        if self.namespace == "full_docs":
 | 
			
		||||
        if self.namespace.endswith("full_docs"):
 | 
			
		||||
            merge_sql = SQL_TEMPLATES["upsert_doc_full"]
 | 
			
		||||
            data = []
 | 
			
		||||
            for k, v in self._data.items():
 | 
			
		||||
@ -211,8 +211,10 @@ class TiDBKVStorage(BaseKVStorage):
 | 
			
		||||
        return left_data
 | 
			
		||||
 | 
			
		||||
    async def index_done_callback(self):
 | 
			
		||||
        if self.namespace in ["full_docs", "text_chunks"]:
 | 
			
		||||
            logger.info("full doc and chunk data had been saved into TiDB db!")
 | 
			
		||||
        for n in ("full_docs", "text_chunks"):
 | 
			
		||||
            if self.namespace.endswith(n):
 | 
			
		||||
                logger.info("full doc and chunk data had been saved into TiDB db!")
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
@ -258,7 +260,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
 | 
			
		||||
        if not len(data):
 | 
			
		||||
            logger.warning("You insert an empty data to vector DB")
 | 
			
		||||
            return []
 | 
			
		||||
        if self.namespace == "chunks":
 | 
			
		||||
        if self.namespace.endswith("chunks"):
 | 
			
		||||
            return []
 | 
			
		||||
        logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
 | 
			
		||||
 | 
			
		||||
@ -288,14 +290,14 @@ class TiDBVectorDBStorage(BaseVectorStorage):
 | 
			
		||||
        for i, d in enumerate(list_data):
 | 
			
		||||
            d["content_vector"] = embeddings[i]
 | 
			
		||||
 | 
			
		||||
        if self.namespace == "entities":
 | 
			
		||||
        if self.namespace.endswith("entities"):
 | 
			
		||||
            data = []
 | 
			
		||||
            for item in list_data:
 | 
			
		||||
                param = {
 | 
			
		||||
                    "id": item["id"],
 | 
			
		||||
                    "name": item["entity_name"],
 | 
			
		||||
                    "content": item["content"],
 | 
			
		||||
                    "content_vector": f"{item["content_vector"].tolist()}",
 | 
			
		||||
                    "content_vector": f"{item['content_vector'].tolist()}",
 | 
			
		||||
                    "workspace": self.db.workspace,
 | 
			
		||||
                }
 | 
			
		||||
                # update entity_id if node inserted by graph_storage_instance before
 | 
			
		||||
@ -309,7 +311,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
 | 
			
		||||
                merge_sql = SQL_TEMPLATES["insert_entity"]
 | 
			
		||||
                await self.db.execute(merge_sql, data)
 | 
			
		||||
 | 
			
		||||
        elif self.namespace == "relationships":
 | 
			
		||||
        elif self.namespace.endswith("relationships"):
 | 
			
		||||
            data = []
 | 
			
		||||
            for item in list_data:
 | 
			
		||||
                param = {
 | 
			
		||||
@ -317,7 +319,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
 | 
			
		||||
                    "source_name": item["src_id"],
 | 
			
		||||
                    "target_name": item["tgt_id"],
 | 
			
		||||
                    "content": item["content"],
 | 
			
		||||
                    "content_vector": f"{item["content_vector"].tolist()}",
 | 
			
		||||
                    "content_vector": f"{item['content_vector'].tolist()}",
 | 
			
		||||
                    "workspace": self.db.workspace,
 | 
			
		||||
                }
 | 
			
		||||
                # update relation_id if node inserted by graph_storage_instance before
 | 
			
		||||
 | 
			
		||||
@ -167,6 +167,7 @@ class LightRAG:
 | 
			
		||||
 | 
			
		||||
    # storage
 | 
			
		||||
    vector_db_storage_cls_kwargs: dict = field(default_factory=dict)
 | 
			
		||||
    namespace_prefix: str = field(default="")
 | 
			
		||||
 | 
			
		||||
    enable_llm_cache: bool = True
 | 
			
		||||
    # Sometimes there are some reason the LLM failed at Extracting Entities, and we want to continue without LLM cost, we can use this flag
 | 
			
		||||
@ -227,13 +228,8 @@ class LightRAG:
 | 
			
		||||
            self.graph_storage_cls, global_config=global_config
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        self.json_doc_status_storage = self.key_string_value_json_storage_cls(
 | 
			
		||||
            namespace="json_doc_status_storage",
 | 
			
		||||
            embedding_func=None,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        self.llm_response_cache = self.key_string_value_json_storage_cls(
 | 
			
		||||
            namespace="llm_response_cache",
 | 
			
		||||
            namespace=self.namespace_prefix + "llm_response_cache",
 | 
			
		||||
            embedding_func=self.embedding_func,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
@ -241,33 +237,34 @@ class LightRAG:
 | 
			
		||||
        # add embedding func by walter
 | 
			
		||||
        ####
 | 
			
		||||
        self.full_docs = self.key_string_value_json_storage_cls(
 | 
			
		||||
            namespace="full_docs",
 | 
			
		||||
            namespace=self.namespace_prefix + "full_docs",
 | 
			
		||||
            embedding_func=self.embedding_func,
 | 
			
		||||
        )
 | 
			
		||||
        self.text_chunks = self.key_string_value_json_storage_cls(
 | 
			
		||||
            namespace="text_chunks",
 | 
			
		||||
            namespace=self.namespace_prefix + "text_chunks",
 | 
			
		||||
            embedding_func=self.embedding_func,
 | 
			
		||||
        )
 | 
			
		||||
        self.chunk_entity_relation_graph = self.graph_storage_cls(
 | 
			
		||||
            namespace="chunk_entity_relation",
 | 
			
		||||
            namespace=self.namespace_prefix + "chunk_entity_relation",
 | 
			
		||||
            embedding_func=self.embedding_func,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        ####
 | 
			
		||||
        # add embedding func by walter over
 | 
			
		||||
        ####
 | 
			
		||||
 | 
			
		||||
        self.entities_vdb = self.vector_db_storage_cls(
 | 
			
		||||
            namespace="entities",
 | 
			
		||||
            namespace=self.namespace_prefix + "entities",
 | 
			
		||||
            embedding_func=self.embedding_func,
 | 
			
		||||
            meta_fields={"entity_name"},
 | 
			
		||||
        )
 | 
			
		||||
        self.relationships_vdb = self.vector_db_storage_cls(
 | 
			
		||||
            namespace="relationships",
 | 
			
		||||
            namespace=self.namespace_prefix + "relationships",
 | 
			
		||||
            embedding_func=self.embedding_func,
 | 
			
		||||
            meta_fields={"src_id", "tgt_id"},
 | 
			
		||||
        )
 | 
			
		||||
        self.chunks_vdb = self.vector_db_storage_cls(
 | 
			
		||||
            namespace="chunks",
 | 
			
		||||
            namespace=self.namespace_prefix + "chunks",
 | 
			
		||||
            embedding_func=self.embedding_func,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
@ -277,7 +274,7 @@ class LightRAG:
 | 
			
		||||
            hashing_kv = self.llm_response_cache
 | 
			
		||||
        else:
 | 
			
		||||
            hashing_kv = self.key_string_value_json_storage_cls(
 | 
			
		||||
                namespace="llm_response_cache",
 | 
			
		||||
                namespace=self.namespace_prefix + "llm_response_cache",
 | 
			
		||||
                embedding_func=self.embedding_func,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
@ -292,7 +289,7 @@ class LightRAG:
 | 
			
		||||
        # Initialize document status storage
 | 
			
		||||
        self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage)
 | 
			
		||||
        self.doc_status = self.doc_status_storage_cls(
 | 
			
		||||
            namespace="doc_status",
 | 
			
		||||
            namespace=self.namespace_prefix + "doc_status",
 | 
			
		||||
            global_config=global_config,
 | 
			
		||||
            embedding_func=None,
 | 
			
		||||
        )
 | 
			
		||||
@ -928,7 +925,7 @@ class LightRAG:
 | 
			
		||||
                if self.llm_response_cache
 | 
			
		||||
                and hasattr(self.llm_response_cache, "global_config")
 | 
			
		||||
                else self.key_string_value_json_storage_cls(
 | 
			
		||||
                    namespace="llm_response_cache",
 | 
			
		||||
                    namespace=self.namespace_prefix + "llm_response_cache",
 | 
			
		||||
                    global_config=asdict(self),
 | 
			
		||||
                    embedding_func=self.embedding_func,
 | 
			
		||||
                ),
 | 
			
		||||
@ -945,7 +942,7 @@ class LightRAG:
 | 
			
		||||
                if self.llm_response_cache
 | 
			
		||||
                and hasattr(self.llm_response_cache, "global_config")
 | 
			
		||||
                else self.key_string_value_json_storage_cls(
 | 
			
		||||
                    namespace="llm_response_cache",
 | 
			
		||||
                    namespace=self.namespace_prefix + "llm_response_cache",
 | 
			
		||||
                    global_config=asdict(self),
 | 
			
		||||
                    embedding_func=self.embedding_func,
 | 
			
		||||
                ),
 | 
			
		||||
@ -964,7 +961,7 @@ class LightRAG:
 | 
			
		||||
                if self.llm_response_cache
 | 
			
		||||
                and hasattr(self.llm_response_cache, "global_config")
 | 
			
		||||
                else self.key_string_value_json_storage_cls(
 | 
			
		||||
                    namespace="llm_response_cache",
 | 
			
		||||
                    namespace=self.namespace_prefix + "llm_response_cache",
 | 
			
		||||
                    global_config=asdict(self),
 | 
			
		||||
                    embedding_func=self.embedding_func,
 | 
			
		||||
                ),
 | 
			
		||||
@ -1005,7 +1002,7 @@ class LightRAG:
 | 
			
		||||
            global_config=asdict(self),
 | 
			
		||||
            hashing_kv=self.llm_response_cache
 | 
			
		||||
            or self.key_string_value_json_storage_cls(
 | 
			
		||||
                namespace="llm_response_cache",
 | 
			
		||||
                namespace=self.namespace_prefix + "llm_response_cache",
 | 
			
		||||
                global_config=asdict(self),
 | 
			
		||||
                embedding_func=self.embedding_func,
 | 
			
		||||
            ),
 | 
			
		||||
@ -1036,7 +1033,7 @@ class LightRAG:
 | 
			
		||||
                if self.llm_response_cache
 | 
			
		||||
                and hasattr(self.llm_response_cache, "global_config")
 | 
			
		||||
                else self.key_string_value_json_storage_cls(
 | 
			
		||||
                    namespace="llm_response_cache",
 | 
			
		||||
                    namespace=self.namespace_prefix + "llm_response_cache",
 | 
			
		||||
                    global_config=asdict(self),
 | 
			
		||||
                    embedding_func=self.embedding_funcne,
 | 
			
		||||
                ),
 | 
			
		||||
@ -1052,7 +1049,7 @@ class LightRAG:
 | 
			
		||||
                if self.llm_response_cache
 | 
			
		||||
                and hasattr(self.llm_response_cache, "global_config")
 | 
			
		||||
                else self.key_string_value_json_storage_cls(
 | 
			
		||||
                    namespace="llm_response_cache",
 | 
			
		||||
                    namespace=self.namespace_prefix + "llm_response_cache",
 | 
			
		||||
                    global_config=asdict(self),
 | 
			
		||||
                    embedding_func=self.embedding_func,
 | 
			
		||||
                ),
 | 
			
		||||
@ -1071,7 +1068,7 @@ class LightRAG:
 | 
			
		||||
                if self.llm_response_cache
 | 
			
		||||
                and hasattr(self.llm_response_cache, "global_config")
 | 
			
		||||
                else self.key_string_value_json_storage_cls(
 | 
			
		||||
                    namespace="llm_response_cache",
 | 
			
		||||
                    namespace=self.namespace_prefix + "llm_response_cache",
 | 
			
		||||
                    global_config=asdict(self),
 | 
			
		||||
                    embedding_func=self.embedding_func,
 | 
			
		||||
                ),
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user