mirror of
				https://github.com/HKUDS/LightRAG.git
				synced 2025-11-03 19:29:38 +00:00 
			
		
		
		
	Added OpenAI compatible options and examples
This commit is contained in:
		
							parent
							
								
									bd46f222cd
								
							
						
					
					
						commit
						eeded24b42
					
				
							
								
								
									
										69
									
								
								examples/lightrag_openai_compatible_demo.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										69
									
								
								examples/lightrag_openai_compatible_demo.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,69 @@
 | 
				
			|||||||
 | 
					import os
 | 
				
			||||||
 | 
					import asyncio
 | 
				
			||||||
 | 
					from lightrag import LightRAG, QueryParam
 | 
				
			||||||
 | 
					from lightrag.llm import openai_complete_if_cache, openai_embedding
 | 
				
			||||||
 | 
					from lightrag.utils import EmbeddingFunc
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					WORKING_DIR = "./dickens"
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					if not os.path.exists(WORKING_DIR):
 | 
				
			||||||
 | 
					    os.mkdir(WORKING_DIR)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					async def llm_model_func(
 | 
				
			||||||
 | 
					    prompt, system_prompt=None, history_messages=[], **kwargs
 | 
				
			||||||
 | 
					) -> str:
 | 
				
			||||||
 | 
					    return await openai_complete_if_cache(
 | 
				
			||||||
 | 
					        "solar-mini",
 | 
				
			||||||
 | 
					        prompt,
 | 
				
			||||||
 | 
					        system_prompt=system_prompt,
 | 
				
			||||||
 | 
					        history_messages=history_messages,
 | 
				
			||||||
 | 
					        api_key=os.getenv("UPSTAGE_API_KEY"),
 | 
				
			||||||
 | 
					        base_url="https://api.upstage.ai/v1/solar",
 | 
				
			||||||
 | 
					        **kwargs
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					async def embedding_func(texts: list[str]) -> np.ndarray:
 | 
				
			||||||
 | 
					    return await openai_embedding(
 | 
				
			||||||
 | 
					        texts,
 | 
				
			||||||
 | 
					        model="solar-embedding-1-large-query",
 | 
				
			||||||
 | 
					        api_key=os.getenv("UPSTAGE_API_KEY"),
 | 
				
			||||||
 | 
					        base_url="https://api.upstage.ai/v1/solar"
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# function test
 | 
				
			||||||
 | 
					async def test_funcs():
 | 
				
			||||||
 | 
					    result = await llm_model_func("How are you?")
 | 
				
			||||||
 | 
					    print("llm_model_func: ", result)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    result = await embedding_func(["How are you?"])
 | 
				
			||||||
 | 
					    print("embedding_func: ", result)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					asyncio.run(test_funcs())
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					rag = LightRAG(
 | 
				
			||||||
 | 
					    working_dir=WORKING_DIR,
 | 
				
			||||||
 | 
					    llm_model_func=llm_model_func,
 | 
				
			||||||
 | 
					    embedding_func=EmbeddingFunc(
 | 
				
			||||||
 | 
					        embedding_dim=4096,
 | 
				
			||||||
 | 
					        max_token_size=8192,
 | 
				
			||||||
 | 
					        func=embedding_func
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					with open("./book.txt") as f:
 | 
				
			||||||
 | 
					    rag.insert(f.read())
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Perform naive search
 | 
				
			||||||
 | 
					print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Perform local search
 | 
				
			||||||
 | 
					print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Perform global search
 | 
				
			||||||
 | 
					print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Perform hybrid search
 | 
				
			||||||
 | 
					print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
 | 
				
			||||||
@ -19,9 +19,12 @@ os.environ["TOKENIZERS_PARALLELISM"] = "false"
 | 
				
			|||||||
    retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
 | 
					    retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
 | 
				
			||||||
)
 | 
					)
 | 
				
			||||||
async def openai_complete_if_cache(
 | 
					async def openai_complete_if_cache(
 | 
				
			||||||
    model, prompt, system_prompt=None, history_messages=[], **kwargs
 | 
					    model, prompt, system_prompt=None, history_messages=[], base_url=None, api_key=None, **kwargs
 | 
				
			||||||
) -> str:
 | 
					) -> str:
 | 
				
			||||||
    openai_async_client = AsyncOpenAI()
 | 
					    if api_key:
 | 
				
			||||||
 | 
					        os.environ["OPENAI_API_KEY"] = api_key
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    openai_async_client = AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
 | 
				
			||||||
    hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
 | 
					    hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
 | 
				
			||||||
    messages = []
 | 
					    messages = []
 | 
				
			||||||
    if system_prompt:
 | 
					    if system_prompt:
 | 
				
			||||||
@ -133,10 +136,13 @@ async def hf_model_complete(
 | 
				
			|||||||
    wait=wait_exponential(multiplier=1, min=4, max=10),
 | 
					    wait=wait_exponential(multiplier=1, min=4, max=10),
 | 
				
			||||||
    retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
 | 
					    retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
 | 
				
			||||||
)
 | 
					)
 | 
				
			||||||
async def openai_embedding(texts: list[str]) -> np.ndarray:
 | 
					async def openai_embedding(texts: list[str], model: str = "text-embedding-3-small", base_url: str = None, api_key: str = None) -> np.ndarray:
 | 
				
			||||||
    openai_async_client = AsyncOpenAI()
 | 
					    if api_key:
 | 
				
			||||||
 | 
					        os.environ["OPENAI_API_KEY"] = api_key
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    openai_async_client = AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
 | 
				
			||||||
    response = await openai_async_client.embeddings.create(
 | 
					    response = await openai_async_client.embeddings.create(
 | 
				
			||||||
        model="text-embedding-3-small", input=texts, encoding_format="float"
 | 
					        model=model, input=texts, encoding_format="float"
 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
    return np.array([dp.embedding for dp in response.data])
 | 
					    return np.array([dp.embedding for dp in response.data])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user