mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-08-15 20:20:42 +00:00
linting errors
This commit is contained in:
parent
f87c235a4c
commit
f049f2f5c4
@ -9,6 +9,7 @@ WORKING_DIR = "./lightrag_demo"
|
|||||||
if not os.path.exists(WORKING_DIR):
|
if not os.path.exists(WORKING_DIR):
|
||||||
os.mkdir(WORKING_DIR)
|
os.mkdir(WORKING_DIR)
|
||||||
|
|
||||||
|
|
||||||
async def initialize_rag():
|
async def initialize_rag():
|
||||||
rag = LightRAG(
|
rag = LightRAG(
|
||||||
working_dir=WORKING_DIR,
|
working_dir=WORKING_DIR,
|
||||||
@ -21,6 +22,7 @@ async def initialize_rag():
|
|||||||
|
|
||||||
return rag
|
return rag
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
# Initialize RAG instance
|
# Initialize RAG instance
|
||||||
rag = asyncio.run(initialize_rag())
|
rag = asyncio.run(initialize_rag())
|
||||||
@ -33,8 +35,7 @@ def main():
|
|||||||
print("--- NAIVE mode ---")
|
print("--- NAIVE mode ---")
|
||||||
print(
|
print(
|
||||||
rag.query(
|
rag.query(
|
||||||
"What are the main themes in this story?",
|
"What are the main themes in this story?", param=QueryParam(mode="naive")
|
||||||
param=QueryParam(mode="naive")
|
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -42,8 +43,7 @@ def main():
|
|||||||
print("\n--- LOCAL mode ---")
|
print("\n--- LOCAL mode ---")
|
||||||
print(
|
print(
|
||||||
rag.query(
|
rag.query(
|
||||||
"What are the main themes in this story?",
|
"What are the main themes in this story?", param=QueryParam(mode="local")
|
||||||
param=QueryParam(mode="local")
|
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -51,8 +51,7 @@ def main():
|
|||||||
print("\n--- GLOBAL mode ---")
|
print("\n--- GLOBAL mode ---")
|
||||||
print(
|
print(
|
||||||
rag.query(
|
rag.query(
|
||||||
"What are the main themes in this story?",
|
"What are the main themes in this story?", param=QueryParam(mode="global")
|
||||||
param=QueryParam(mode="global")
|
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -60,8 +59,7 @@ def main():
|
|||||||
print("\n--- HYBRID mode ---")
|
print("\n--- HYBRID mode ---")
|
||||||
print(
|
print(
|
||||||
rag.query(
|
rag.query(
|
||||||
"What are the main themes in this story?",
|
"What are the main themes in this story?", param=QueryParam(mode="hybrid")
|
||||||
param=QueryParam(mode="hybrid")
|
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -69,8 +67,7 @@ def main():
|
|||||||
print("\n--- MIX mode ---")
|
print("\n--- MIX mode ---")
|
||||||
print(
|
print(
|
||||||
rag.query(
|
rag.query(
|
||||||
"What are the main themes in this story?",
|
"What are the main themes in this story?", param=QueryParam(mode="mix")
|
||||||
param=QueryParam(mode="mix")
|
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -81,10 +78,11 @@ def main():
|
|||||||
"How does the character development reflect Victorian-era attitudes?",
|
"How does the character development reflect Victorian-era attitudes?",
|
||||||
param=QueryParam(
|
param=QueryParam(
|
||||||
mode="global",
|
mode="global",
|
||||||
model_func=gpt_4o_complete # Override default model with more capable one
|
model_func=gpt_4o_complete, # Override default model with more capable one
|
||||||
)
|
),
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
@ -705,7 +705,11 @@ async def kg_query(
|
|||||||
system_prompt: str | None = None,
|
system_prompt: str | None = None,
|
||||||
) -> str | AsyncIterator[str]:
|
) -> str | AsyncIterator[str]:
|
||||||
# Handle cache
|
# Handle cache
|
||||||
use_model_func = query_param.model_func if query_param.model_func else global_config["llm_model_func"]
|
use_model_func = (
|
||||||
|
query_param.model_func
|
||||||
|
if query_param.model_func
|
||||||
|
else global_config["llm_model_func"]
|
||||||
|
)
|
||||||
args_hash = compute_args_hash(query_param.mode, query, cache_type="query")
|
args_hash = compute_args_hash(query_param.mode, query, cache_type="query")
|
||||||
cached_response, quantized, min_val, max_val = await handle_cache(
|
cached_response, quantized, min_val, max_val = await handle_cache(
|
||||||
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
||||||
@ -866,7 +870,9 @@ async def extract_keywords_only(
|
|||||||
logger.debug(f"[kg_query]Prompt Tokens: {len_of_prompts}")
|
logger.debug(f"[kg_query]Prompt Tokens: {len_of_prompts}")
|
||||||
|
|
||||||
# 5. Call the LLM for keyword extraction
|
# 5. Call the LLM for keyword extraction
|
||||||
use_model_func = param.model_func if param.model_func else global_config["llm_model_func"]
|
use_model_func = (
|
||||||
|
param.model_func if param.model_func else global_config["llm_model_func"]
|
||||||
|
)
|
||||||
result = await use_model_func(kw_prompt, keyword_extraction=True)
|
result = await use_model_func(kw_prompt, keyword_extraction=True)
|
||||||
|
|
||||||
# 6. Parse out JSON from the LLM response
|
# 6. Parse out JSON from the LLM response
|
||||||
@ -926,7 +932,11 @@ async def mix_kg_vector_query(
|
|||||||
3. Combining both results for comprehensive answer generation
|
3. Combining both results for comprehensive answer generation
|
||||||
"""
|
"""
|
||||||
# 1. Cache handling
|
# 1. Cache handling
|
||||||
use_model_func = query_param.model_func if query_param.model_func else global_config["llm_model_func"]
|
use_model_func = (
|
||||||
|
query_param.model_func
|
||||||
|
if query_param.model_func
|
||||||
|
else global_config["llm_model_func"]
|
||||||
|
)
|
||||||
args_hash = compute_args_hash("mix", query, cache_type="query")
|
args_hash = compute_args_hash("mix", query, cache_type="query")
|
||||||
cached_response, quantized, min_val, max_val = await handle_cache(
|
cached_response, quantized, min_val, max_val = await handle_cache(
|
||||||
hashing_kv, args_hash, query, "mix", cache_type="query"
|
hashing_kv, args_hash, query, "mix", cache_type="query"
|
||||||
@ -1731,7 +1741,11 @@ async def naive_query(
|
|||||||
system_prompt: str | None = None,
|
system_prompt: str | None = None,
|
||||||
) -> str | AsyncIterator[str]:
|
) -> str | AsyncIterator[str]:
|
||||||
# Handle cache
|
# Handle cache
|
||||||
use_model_func = query_param.model_func if query_param.model_func else global_config["llm_model_func"]
|
use_model_func = (
|
||||||
|
query_param.model_func
|
||||||
|
if query_param.model_func
|
||||||
|
else global_config["llm_model_func"]
|
||||||
|
)
|
||||||
args_hash = compute_args_hash(query_param.mode, query, cache_type="query")
|
args_hash = compute_args_hash(query_param.mode, query, cache_type="query")
|
||||||
cached_response, quantized, min_val, max_val = await handle_cache(
|
cached_response, quantized, min_val, max_val = await handle_cache(
|
||||||
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
||||||
@ -1850,7 +1864,11 @@ async def kg_query_with_keywords(
|
|||||||
# ---------------------------
|
# ---------------------------
|
||||||
# 1) Handle potential cache for query results
|
# 1) Handle potential cache for query results
|
||||||
# ---------------------------
|
# ---------------------------
|
||||||
use_model_func = query_param.model_func if query_param.model_func else global_config["llm_model_func"]
|
use_model_func = (
|
||||||
|
query_param.model_func
|
||||||
|
if query_param.model_func
|
||||||
|
else global_config["llm_model_func"]
|
||||||
|
)
|
||||||
args_hash = compute_args_hash(query_param.mode, query, cache_type="query")
|
args_hash = compute_args_hash(query_param.mode, query, cache_type="query")
|
||||||
cached_response, quantized, min_val, max_val = await handle_cache(
|
cached_response, quantized, min_val, max_val = await handle_cache(
|
||||||
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
||||||
|
Loading…
x
Reference in New Issue
Block a user