Merge branch 'main' into context-builder

This commit is contained in:
yangdx 2025-07-24 14:07:05 +08:00
commit f57ed21593
4 changed files with 109 additions and 15 deletions

View File

@ -123,7 +123,7 @@ LLM_BINDING_API_KEY=your_api_key
####################################################################################
### Embedding Configuration (Should not be changed after the first file processed)
####################################################################################
### Embedding Binding type: openai, ollama, lollms, azure_openai
### Embedding Binding type: openai, ollama, lollms, azure_openai, jina
EMBEDDING_BINDING=ollama
EMBEDDING_MODEL=bge-m3:latest
EMBEDDING_DIM=1024
@ -139,6 +139,13 @@ EMBEDDING_BINDING_HOST=http://localhost:11434
# AZURE_EMBEDDING_ENDPOINT=your_endpoint
# AZURE_EMBEDDING_API_KEY=your_api_key
### Jina AI Embedding
EMBEDDING_BINDING=jina
EMBEDDING_BINDING_HOST=https://api.jina.ai/v1/embeddings
EMBEDDING_MODEL=jina-embeddings-v4
EMBEDDING_DIM=2048
EMBEDDING_BINDING_API_KEY=your_api_key
############################
### Data storage selection
############################

View File

@ -89,7 +89,13 @@ def create_app(args):
]:
raise Exception("llm binding not supported")
if args.embedding_binding not in ["lollms", "ollama", "openai", "azure_openai"]:
if args.embedding_binding not in [
"lollms",
"ollama",
"openai",
"azure_openai",
"jina",
]:
raise Exception("embedding binding not supported")
# Set default hosts if not provided
@ -213,6 +219,8 @@ def create_app(args):
if args.llm_binding_host == "openai-ollama" or args.embedding_binding == "ollama":
from lightrag.llm.openai import openai_complete_if_cache
from lightrag.llm.ollama import ollama_embed
if args.embedding_binding == "jina":
from lightrag.llm.jina import jina_embed
async def openai_alike_model_complete(
prompt,
@ -284,6 +292,13 @@ def create_app(args):
api_key=args.embedding_binding_api_key,
)
if args.embedding_binding == "azure_openai"
else jina_embed(
texts,
dimensions=args.embedding_dim,
base_url=args.embedding_binding_host,
api_key=args.embedding_binding_api_key,
)
if args.embedding_binding == "jina"
else openai_embed(
texts,
model=args.embedding_model,

View File

@ -80,7 +80,7 @@ class PostgreSQLDB:
if ssl_mode in ["disable", "allow", "prefer", "require"]:
if ssl_mode == "disable":
return None
elif ssl_mode in ["require", "prefer"]:
elif ssl_mode in ["require", "prefer", "allow"]:
# Return None for simple SSL requirement, handled in initdb
return None

View File

@ -2,45 +2,117 @@ import os
import pipmaster as pm # Pipmaster for dynamic library install
# install specific modules
if not pm.is_installed("lmdeploy"):
pm.install("lmdeploy")
if not pm.is_installed("aiohttp"):
pm.install("aiohttp")
if not pm.is_installed("tenacity"):
pm.install("tenacity")
import numpy as np
import aiohttp
from tenacity import (
retry,
stop_after_attempt,
wait_exponential,
retry_if_exception_type,
)
from lightrag.utils import wrap_embedding_func_with_attrs, logger
async def fetch_data(url, headers, data):
async with aiohttp.ClientSession() as session:
async with session.post(url, headers=headers, json=data) as response:
if response.status != 200:
error_text = await response.text()
logger.error(f"Jina API error {response.status}: {error_text}")
raise aiohttp.ClientResponseError(
request_info=response.request_info,
history=response.history,
status=response.status,
message=f"Jina API error: {error_text}",
)
response_json = await response.json()
data_list = response_json.get("data", [])
return data_list
@wrap_embedding_func_with_attrs(embedding_dim=2048, max_token_size=8192)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=60),
retry=(
retry_if_exception_type(aiohttp.ClientError)
| retry_if_exception_type(aiohttp.ClientResponseError)
),
)
async def jina_embed(
texts: list[str],
dimensions: int = 1024,
dimensions: int = 2048,
late_chunking: bool = False,
base_url: str = None,
api_key: str = None,
) -> np.ndarray:
"""Generate embeddings for a list of texts using Jina AI's API.
Args:
texts: List of texts to embed.
dimensions: The embedding dimensions (default: 2048 for jina-embeddings-v4).
late_chunking: Whether to use late chunking.
base_url: Optional base URL for the Jina API.
api_key: Optional Jina API key. If None, uses the JINA_API_KEY environment variable.
Returns:
A numpy array of embeddings, one per input text.
Raises:
aiohttp.ClientError: If there is a connection error with the Jina API.
aiohttp.ClientResponseError: If the Jina API returns an error response.
"""
if api_key:
os.environ["JINA_API_KEY"] = api_key
url = "https://api.jina.ai/v1/embeddings" if not base_url else base_url
if "JINA_API_KEY" not in os.environ:
raise ValueError("JINA_API_KEY environment variable is required")
url = base_url or "https://api.jina.ai/v1/embeddings"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ['JINA_API_KEY']}",
}
data = {
"model": "jina-embeddings-v3",
"normalized": True,
"embedding_type": "float",
"dimensions": f"{dimensions}",
"late_chunking": late_chunking,
"model": "jina-embeddings-v4",
"task": "text-matching",
"dimensions": dimensions,
"input": texts,
}
data_list = await fetch_data(url, headers, data)
return np.array([dp["embedding"] for dp in data_list])
# Only add optional parameters if they have non-default values
if late_chunking:
data["late_chunking"] = late_chunking
logger.debug(
f"Jina embedding request: {len(texts)} texts, dimensions: {dimensions}"
)
try:
data_list = await fetch_data(url, headers, data)
if not data_list:
logger.error("Jina API returned empty data list")
raise ValueError("Jina API returned empty data list")
if len(data_list) != len(texts):
logger.error(
f"Jina API returned {len(data_list)} embeddings for {len(texts)} texts"
)
raise ValueError(
f"Jina API returned {len(data_list)} embeddings for {len(texts)} texts"
)
embeddings = np.array([dp["embedding"] for dp in data_list])
logger.debug(f"Jina embeddings generated: shape {embeddings.shape}")
return embeddings
except Exception as e:
logger.error(f"Jina embedding error: {e}")
raise