This commit is contained in:
Larfii 2024-10-07 18:48:45 +08:00
parent 13c67c2bcf
commit fba232487b
6 changed files with 152 additions and 5 deletions

112
examples/batch_eval.py Normal file
View File

@ -0,0 +1,112 @@
import os
import re
import json
import jsonlines
from openai import OpenAI
def batch_eval(query_file, result1_file, result2_file, output_file_path, api_key):
client = OpenAI(api_key=api_key)
with open(query_file, 'r') as f:
data = f.read()
queries = re.findall(r'- Question \d+: (.+)', data)
with open(result1_file, 'r') as f:
answers1 = json.load(f)
answers1 = [i['result'] for i in answers1]
with open(result2_file, 'r') as f:
answers2 = json.load(f)
answers2 = [i['result'] for i in answers2]
requests = []
for i, (query, answer1, answer2) in enumerate(zip(queries, answers1, answers2)):
sys_prompt = f"""
---Role---
You are an expert tasked with evaluating two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
"""
prompt = f"""
You will evaluate two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
- **Comprehensiveness**: How much detail does the answer provide to cover all aspects and details of the question?
- **Diversity**: How varied and rich is the answer in providing different perspectives and insights on the question?
- **Empowerment**: How well does the answer help the reader understand and make informed judgments about the topic?
For each criterion, choose the better answer (either Answer 1 or Answer 2) and explain why. Then, select an overall winner based on these three categories.
Here is the question:
{query}
Here are the two answers:
**Answer 1:**
{answer1}
**Answer 2:**
{answer2}
Evaluate both answers using the three criteria listed above and provide detailed explanations for each criterion.
Output your evaluation in the following JSON format:
{{
"Comprehensiveness": {{
"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"
}},
"Empowerment": {{
"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"
}},
"Overall Winner": {{
"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Summarize why this answer is the overall winner based on the three criteria]"
}}
}}
"""
request_data = {
"custom_id": f"request-{i+1}",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": "gpt-4o-mini",
"messages": [
{"role": "system", "content": sys_prompt},
{"role": "user", "content": prompt}
],
}
}
requests.append(request_data)
with jsonlines.open(output_file_path, mode='w') as writer:
for request in requests:
writer.write(request)
print(f"Batch API requests written to {output_file_path}")
batch_input_file = client.files.create(
file=open(output_file_path, "rb"),
purpose="batch"
)
batch_input_file_id = batch_input_file.id
batch = client.batches.create(
input_file_id=batch_input_file_id,
endpoint="/v1/chat/completions",
completion_window="24h",
metadata={
"description": "nightly eval job"
}
)
print(f'Batch {batch.id} has been created.')
if __name__ == "__main__":
batch_eval()

19
examples/insert.py Normal file
View File

@ -0,0 +1,19 @@
import os
import sys
sys.path.append('xxx/xxx/LightRAG')
from lightrag import LightRAG
os.environ["OPENAI_API_KEY"] = ""
WORKING_DIR = ""
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
rag = LightRAG(working_dir=WORKING_DIR)
with open('./text.txt', 'r') as f:
text = f.read()
rag.insert(text)

17
examples/query.py Normal file
View File

@ -0,0 +1,17 @@
import os
import sys
sys.path.append('xxx/xxx/LightRAG')
from lightrag import LightRAG, QueryParam
os.environ["OPENAI_API_KEY"] = ""
WORKING_DIR = ""
rag = LightRAG(working_dir=WORKING_DIR)
mode = 'global'
query_param = QueryParam(mode=mode)
result, _ = rag.query("", param=query_param)
print(result)

View File

@ -17,10 +17,9 @@ from .utils import compute_args_hash, wrap_embedding_func_with_attrs
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
)
async def openai_complete_if_cache(
model, prompt, api_key=''
, system_prompt=None, history_messages=[], **kwargs
model, prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
openai_async_client = AsyncOpenAI(api_key=api_key)
openai_async_client = AsyncOpenAI()
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
messages = []
if system_prompt:
@ -72,8 +71,8 @@ async def gpt_4o_mini_complete(
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
)
async def openai_embedding(texts: list[str], api_key='') -> np.ndarray:
openai_async_client = AsyncOpenAI(api_key=api_key)
async def openai_embedding(texts: list[str]) -> np.ndarray:
openai_async_client = AsyncOpenAI()
response = await openai_async_client.embeddings.create(
model="text-embedding-3-small", input=texts, encoding_format="float"
)