import os import asyncio from lightrag import LightRAG, QueryParam from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed from lightrag.utils import EmbeddingFunc import numpy as np from lightrag.kg.shared_storage import initialize_pipeline_status ######### # Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert() # import nest_asyncio # nest_asyncio.apply() ######### WORKING_DIR = "./mongodb_test_dir" if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) os.environ["OPENAI_API_KEY"] = "sk-" os.environ["MONGO_URI"] = "mongodb://0.0.0.0:27017/?directConnection=true" os.environ["MONGO_DATABASE"] = "LightRAG" os.environ["MONGO_KG_COLLECTION"] = "MDB_KG" # Embedding Configuration and Functions EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large") EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192)) async def embedding_func(texts: list[str]) -> np.ndarray: return await openai_embed( texts, model=EMBEDDING_MODEL, ) async def get_embedding_dimension(): test_text = ["This is a test sentence."] embedding = await embedding_func(test_text) return embedding.shape[1] async def create_embedding_function_instance(): # Get embedding dimension embedding_dimension = await get_embedding_dimension() # Create embedding function instance return EmbeddingFunc( embedding_dim=embedding_dimension, max_token_size=EMBEDDING_MAX_TOKEN_SIZE, func=embedding_func, ) async def initialize_rag(): embedding_func_instance = await create_embedding_function_instance() rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=gpt_4o_mini_complete, embedding_func=embedding_func_instance, graph_storage="MongoGraphStorage", log_level="DEBUG", ) await rag.initialize_storages() await initialize_pipeline_status() return rag def main(): # Initialize RAG instance rag = asyncio.run(initialize_rag()) with open("./book.txt", "r", encoding="utf-8") as f: rag.insert(f.read()) # Perform naive search print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="naive") ) ) # Perform local search print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="local") ) ) # Perform global search print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="global") ) ) # Perform hybrid search print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="hybrid") ) ) if __name__ == "__main__": main()