#!/usr/bin/env python """ Example script demonstrating the integration of MinerU parser with RAGAnything This example shows how to: 1. Process parsed documents with RAGAnything 2. Perform multimodal queries on the processed documents 3. Handle different types of content (text, images, tables) """ import os import argparse import asyncio from lightrag.llm.openai import openai_complete_if_cache, openai_embed from lightrag.utils import EmbeddingFunc from raganything.raganything import RAGAnything async def process_with_rag( file_path: str, output_dir: str, api_key: str, base_url: str = None, working_dir: str = None, ): """ Process document with RAGAnything Args: file_path: Path to the document output_dir: Output directory for RAG results api_key: OpenAI API key base_url: Optional base URL for API """ try: # Initialize RAGAnything rag = RAGAnything( working_dir=working_dir, llm_model_func=lambda prompt, system_prompt=None, history_messages=[], **kwargs: openai_complete_if_cache( "gpt-4o-mini", prompt, system_prompt=system_prompt, history_messages=history_messages, api_key=api_key, base_url=base_url, **kwargs, ), vision_model_func=lambda prompt, system_prompt=None, history_messages=[], image_data=None, **kwargs: openai_complete_if_cache( "gpt-4o", "", system_prompt=None, history_messages=[], messages=[ {"role": "system", "content": system_prompt} if system_prompt else None, { "role": "user", "content": [ {"type": "text", "text": prompt}, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{image_data}" }, }, ], } if image_data else {"role": "user", "content": prompt}, ], api_key=api_key, base_url=base_url, **kwargs, ) if image_data else openai_complete_if_cache( "gpt-4o-mini", prompt, system_prompt=system_prompt, history_messages=history_messages, api_key=api_key, base_url=base_url, **kwargs, ), embedding_func=EmbeddingFunc( embedding_dim=3072, max_token_size=8192, func=lambda texts: openai_embed( texts, model="text-embedding-3-large", api_key=api_key, base_url=base_url, ), ), ) # Process document await rag.process_document_complete( file_path=file_path, output_dir=output_dir, parse_method="auto" ) # Example queries queries = [ "What is the main content of the document?", "Describe the images and figures in the document", "Tell me about the experimental results and data tables", ] print("\nQuerying processed document:") for query in queries: print(f"\nQuery: {query}") result = await rag.query_with_multimodal(query, mode="hybrid") print(f"Answer: {result}") except Exception as e: print(f"Error processing with RAG: {str(e)}") def main(): """Main function to run the example""" parser = argparse.ArgumentParser(description="MinerU RAG Example") parser.add_argument("file_path", help="Path to the document to process") parser.add_argument( "--working_dir", "-w", default="./rag_storage", help="Working directory path" ) parser.add_argument( "--output", "-o", default="./output", help="Output directory path" ) parser.add_argument( "--api-key", required=True, help="OpenAI API key for RAG processing" ) parser.add_argument("--base-url", help="Optional base URL for API") args = parser.parse_args() # Create output directory if specified if args.output: os.makedirs(args.output, exist_ok=True) # Process with RAG asyncio.run( process_with_rag( args.file_path, args.output, args.api_key, args.base_url, args.working_dir ) ) if __name__ == "__main__": main()