""" Configs for the LightRAG API. """ import os import argparse import logging from dotenv import load_dotenv from lightrag.utils import get_env_value from lightrag.constants import ( DEFAULT_WOKERS, DEFAULT_TIMEOUT, ) # use the .env that is inside the current folder # allows to use different .env file for each lightrag instance # the OS environment variables take precedence over the .env file load_dotenv(dotenv_path=".env", override=False) class OllamaServerInfos: # Constants for emulated Ollama model information LIGHTRAG_NAME = "lightrag" LIGHTRAG_TAG = os.getenv("OLLAMA_EMULATING_MODEL_TAG", "latest") LIGHTRAG_MODEL = f"{LIGHTRAG_NAME}:{LIGHTRAG_TAG}" LIGHTRAG_SIZE = 7365960935 # it's a dummy value LIGHTRAG_CREATED_AT = "2024-01-15T00:00:00Z" LIGHTRAG_DIGEST = "sha256:lightrag" ollama_server_infos = OllamaServerInfos() class DefaultRAGStorageConfig: KV_STORAGE = "JsonKVStorage" VECTOR_STORAGE = "NanoVectorDBStorage" GRAPH_STORAGE = "NetworkXStorage" DOC_STATUS_STORAGE = "JsonDocStatusStorage" def get_default_host(binding_type: str) -> str: default_hosts = { "ollama": os.getenv("LLM_BINDING_HOST", "http://localhost:11434"), "lollms": os.getenv("LLM_BINDING_HOST", "http://localhost:9600"), "azure_openai": os.getenv("AZURE_OPENAI_ENDPOINT", "https://api.openai.com/v1"), "openai": os.getenv("LLM_BINDING_HOST", "https://api.openai.com/v1"), } return default_hosts.get( binding_type, os.getenv("LLM_BINDING_HOST", "http://localhost:11434") ) # fallback to ollama if unknown def parse_args() -> argparse.Namespace: """ Parse command line arguments with environment variable fallback Args: is_uvicorn_mode: Whether running under uvicorn mode Returns: argparse.Namespace: Parsed arguments """ parser = argparse.ArgumentParser( description="LightRAG FastAPI Server with separate working and input directories" ) # Server configuration parser.add_argument( "--host", default=get_env_value("HOST", "0.0.0.0"), help="Server host (default: from env or 0.0.0.0)", ) parser.add_argument( "--port", type=int, default=get_env_value("PORT", 9621, int), help="Server port (default: from env or 9621)", ) # Directory configuration parser.add_argument( "--working-dir", default=get_env_value("WORKING_DIR", "./rag_storage"), help="Working directory for RAG storage (default: from env or ./rag_storage)", ) parser.add_argument( "--input-dir", default=get_env_value("INPUT_DIR", "./inputs"), help="Directory containing input documents (default: from env or ./inputs)", ) parser.add_argument( "--timeout", default=get_env_value("TIMEOUT", DEFAULT_TIMEOUT, int, special_none=True), type=int, help="Timeout in seconds (useful when using slow AI). Use None for infinite timeout", ) # RAG configuration parser.add_argument( "--max-async", type=int, default=get_env_value("MAX_ASYNC", 4, int), help="Maximum async operations (default: from env or 4)", ) parser.add_argument( "--max-tokens", type=int, default=get_env_value("MAX_TOKENS", 32768, int), help="Maximum token size (default: from env or 32768)", ) # Logging configuration parser.add_argument( "--log-level", default=get_env_value("LOG_LEVEL", "INFO"), choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"], help="Logging level (default: from env or INFO)", ) parser.add_argument( "--verbose", action="store_true", default=get_env_value("VERBOSE", False, bool), help="Enable verbose debug output(only valid for DEBUG log-level)", ) parser.add_argument( "--key", type=str, default=get_env_value("LIGHTRAG_API_KEY", None), help="API key for authentication. This protects lightrag server against unauthorized access", ) # Optional https parameters parser.add_argument( "--ssl", action="store_true", default=get_env_value("SSL", False, bool), help="Enable HTTPS (default: from env or False)", ) parser.add_argument( "--ssl-certfile", default=get_env_value("SSL_CERTFILE", None), help="Path to SSL certificate file (required if --ssl is enabled)", ) parser.add_argument( "--ssl-keyfile", default=get_env_value("SSL_KEYFILE", None), help="Path to SSL private key file (required if --ssl is enabled)", ) parser.add_argument( "--history-turns", type=int, default=get_env_value("HISTORY_TURNS", 3, int), help="Number of conversation history turns to include (default: from env or 3)", ) # Search parameters parser.add_argument( "--top-k", type=int, default=get_env_value("TOP_K", 60, int), help="Number of most similar results to return (default: from env or 60)", ) parser.add_argument( "--cosine-threshold", type=float, default=get_env_value("COSINE_THRESHOLD", 0.2, float), help="Cosine similarity threshold (default: from env or 0.4)", ) # Ollama model name parser.add_argument( "--simulated-model-name", type=str, default=get_env_value( "SIMULATED_MODEL_NAME", ollama_server_infos.LIGHTRAG_MODEL ), help="Number of conversation history turns to include (default: from env or 3)", ) # Namespace parser.add_argument( "--namespace-prefix", type=str, default=get_env_value("NAMESPACE_PREFIX", ""), help="Prefix of the namespace", ) parser.add_argument( "--auto-scan-at-startup", action="store_true", default=False, help="Enable automatic scanning when the program starts", ) # Server workers configuration parser.add_argument( "--workers", type=int, default=get_env_value("WORKERS", DEFAULT_WOKERS, int), help="Number of worker processes (default: from env or 1)", ) # LLM and embedding bindings parser.add_argument( "--llm-binding", type=str, default=get_env_value("LLM_BINDING", "ollama"), choices=["lollms", "ollama", "openai", "openai-ollama", "azure_openai"], help="LLM binding type (default: from env or ollama)", ) parser.add_argument( "--embedding-binding", type=str, default=get_env_value("EMBEDDING_BINDING", "ollama"), choices=["lollms", "ollama", "openai", "azure_openai"], help="Embedding binding type (default: from env or ollama)", ) args = parser.parse_args() # convert relative path to absolute path args.working_dir = os.path.abspath(args.working_dir) args.input_dir = os.path.abspath(args.input_dir) # Inject storage configuration from environment variables args.kv_storage = get_env_value( "LIGHTRAG_KV_STORAGE", DefaultRAGStorageConfig.KV_STORAGE ) args.doc_status_storage = get_env_value( "LIGHTRAG_DOC_STATUS_STORAGE", DefaultRAGStorageConfig.DOC_STATUS_STORAGE ) args.graph_storage = get_env_value( "LIGHTRAG_GRAPH_STORAGE", DefaultRAGStorageConfig.GRAPH_STORAGE ) args.vector_storage = get_env_value( "LIGHTRAG_VECTOR_STORAGE", DefaultRAGStorageConfig.VECTOR_STORAGE ) # Get MAX_PARALLEL_INSERT from environment args.max_parallel_insert = get_env_value("MAX_PARALLEL_INSERT", 2, int) # Handle openai-ollama special case if args.llm_binding == "openai-ollama": args.llm_binding = "openai" args.embedding_binding = "ollama" args.llm_binding_host = get_env_value( "LLM_BINDING_HOST", get_default_host(args.llm_binding) ) args.embedding_binding_host = get_env_value( "EMBEDDING_BINDING_HOST", get_default_host(args.embedding_binding) ) args.llm_binding_api_key = get_env_value("LLM_BINDING_API_KEY", None) args.embedding_binding_api_key = get_env_value("EMBEDDING_BINDING_API_KEY", "") # Inject model configuration args.llm_model = get_env_value("LLM_MODEL", "mistral-nemo:latest") args.embedding_model = get_env_value("EMBEDDING_MODEL", "bge-m3:latest") args.embedding_dim = get_env_value("EMBEDDING_DIM", 1024, int) args.max_embed_tokens = get_env_value("MAX_EMBED_TOKENS", 8192, int) # Inject chunk configuration args.chunk_size = get_env_value("CHUNK_SIZE", 1200, int) args.chunk_overlap_size = get_env_value("CHUNK_OVERLAP_SIZE", 100, int) # Inject LLM cache configuration args.enable_llm_cache_for_extract = get_env_value( "ENABLE_LLM_CACHE_FOR_EXTRACT", True, bool ) args.enable_llm_cache = get_env_value("ENABLE_LLM_CACHE", True, bool) # Inject LLM temperature configuration args.temperature = get_env_value("TEMPERATURE", 0.5, float) # Select Document loading tool (DOCLING, DEFAULT) args.document_loading_engine = get_env_value("DOCUMENT_LOADING_ENGINE", "DEFAULT") # Add environment variables that were previously read directly args.cors_origins = get_env_value("CORS_ORIGINS", "*") args.summary_language = get_env_value("SUMMARY_LANGUAGE", "English") args.whitelist_paths = get_env_value("WHITELIST_PATHS", "/health,/api/*") # For JWT Auth args.auth_accounts = get_env_value("AUTH_ACCOUNTS", "") args.token_secret = get_env_value("TOKEN_SECRET", "lightrag-jwt-default-secret") args.token_expire_hours = get_env_value("TOKEN_EXPIRE_HOURS", 48, int) args.guest_token_expire_hours = get_env_value("GUEST_TOKEN_EXPIRE_HOURS", 24, int) args.jwt_algorithm = get_env_value("JWT_ALGORITHM", "HS256") ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name return args def update_uvicorn_mode_config(): # If in uvicorn mode and workers > 1, force it to 1 and log warning if global_args.workers > 1: original_workers = global_args.workers global_args.workers = 1 # Log warning directly here logging.warning( f"In uvicorn mode, workers parameter was set to {original_workers}. Forcing workers=1" ) global_args = parse_args()