import os from lightrag import LightRAG, QueryParam from lightrag.wrapper.llama_index_impl import llama_index_complete_if_cache, llama_index_embed from lightrag.utils import EmbeddingFunc from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding import asyncio # Configure working directory DEFAULT_RAG_DIR = "index_default" WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}") print(f"WORKING_DIR: {WORKING_DIR}") # Model configuration LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4") print(f"LLM_MODEL: {LLM_MODEL}") EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-small") print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}") EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192)) print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}") # OpenAI configuration OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "your-api-key-here") if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) # Initialize LLM function async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs): try: # Initialize OpenAI if not in kwargs if 'llm_instance' not in kwargs: llm_instance = OpenAI( model=LLM_MODEL, api_key=OPENAI_API_KEY, temperature=0.7, ) kwargs['llm_instance'] = llm_instance response = await llama_index_complete_if_cache( kwargs['llm_instance'], prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) return response except Exception as e: print(f"LLM request failed: {str(e)}") raise # Initialize embedding function async def embedding_func(texts): try: embed_model = OpenAIEmbedding( model=EMBEDDING_MODEL, api_key=OPENAI_API_KEY, ) return await llama_index_embed(texts, embed_model=embed_model) except Exception as e: print(f"Embedding failed: {str(e)}") raise # Get embedding dimension async def get_embedding_dim(): test_text = ["This is a test sentence."] embedding = await embedding_func(test_text) embedding_dim = embedding.shape[1] print(f"embedding_dim={embedding_dim}") return embedding_dim # Initialize RAG instance rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=llm_model_func, embedding_func=EmbeddingFunc( embedding_dim=asyncio.run(get_embedding_dim()), max_token_size=EMBEDDING_MAX_TOKEN_SIZE, func=embedding_func, ), ) # Insert example text with open("./book.txt", "r", encoding="utf-8") as f: rag.insert(f.read()) # Test different query modes print("\nNaive Search:") print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))) print("\nLocal Search:") print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))) print("\nGlobal Search:") print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))) print("\nHybrid Search:") print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))