# Rerank Integration Guide LightRAG supports reranking functionality to improve retrieval quality by re-ordering documents based on their relevance to the query. Reranking is now controlled per query via the `enable_rerank` parameter (default: True). ## Quick Start ### Environment Variables Set these variables in your `.env` file or environment for rerank model configuration: ```bash # Rerank model configuration (required when enable_rerank=True in queries) RERANK_MODEL=BAAI/bge-reranker-v2-m3 RERANK_BINDING_HOST=https://api.your-provider.com/v1/rerank RERANK_BINDING_API_KEY=your_api_key_here ``` ### Programmatic Configuration ```python from lightrag import LightRAG, QueryParam from lightrag.rerank import custom_rerank, RerankModel # Method 1: Using a custom rerank function with all settings included async def my_rerank_func(query: str, documents: list, top_k: int = None, **kwargs): return await custom_rerank( query=query, documents=documents, model="BAAI/bge-reranker-v2-m3", base_url="https://api.your-provider.com/v1/rerank", api_key="your_api_key_here", top_k=top_k or 10, # Handle top_k within the function **kwargs ) rag = LightRAG( working_dir="./rag_storage", llm_model_func=your_llm_func, embedding_func=your_embedding_func, rerank_model_func=my_rerank_func, # Configure rerank function ) # Query with rerank enabled (default) result = await rag.aquery( "your query", param=QueryParam(enable_rerank=True) # Control rerank per query ) # Query with rerank disabled result = await rag.aquery( "your query", param=QueryParam(enable_rerank=False) ) # Method 2: Using RerankModel wrapper rerank_model = RerankModel( rerank_func=custom_rerank, kwargs={ "model": "BAAI/bge-reranker-v2-m3", "base_url": "https://api.your-provider.com/v1/rerank", "api_key": "your_api_key_here", } ) rag = LightRAG( working_dir="./rag_storage", llm_model_func=your_llm_func, embedding_func=your_embedding_func, rerank_model_func=rerank_model.rerank, ) # Control rerank per query result = await rag.aquery( "your query", param=QueryParam( enable_rerank=True, # Enable rerank for this query chunk_top_k=5 # Number of chunks to keep after reranking ) ) ``` ## Supported Providers ### 1. Custom/Generic API (Recommended) For Jina/Cohere compatible APIs: ```python from lightrag.rerank import custom_rerank # Your custom API endpoint result = await custom_rerank( query="your query", documents=documents, model="BAAI/bge-reranker-v2-m3", base_url="https://api.your-provider.com/v1/rerank", api_key="your_api_key_here", top_k=10 ) ``` ### 2. Jina AI ```python from lightrag.rerank import jina_rerank result = await jina_rerank( query="your query", documents=documents, model="BAAI/bge-reranker-v2-m3", api_key="your_jina_api_key", top_k=10 ) ``` ### 3. Cohere ```python from lightrag.rerank import cohere_rerank result = await cohere_rerank( query="your query", documents=documents, model="rerank-english-v2.0", api_key="your_cohere_api_key", top_k=10 ) ``` ## Integration Points Reranking is automatically applied at these key retrieval stages: 1. **Naive Mode**: After vector similarity search in `_get_vector_context` 2. **Local Mode**: After entity retrieval in `_get_node_data` 3. **Global Mode**: After relationship retrieval in `_get_edge_data` 4. **Hybrid/Mix Modes**: Applied to all relevant components ## Configuration Parameters | Parameter | Type | Default | Description | |-----------|------|---------|-------------| | `enable_rerank` | bool | False | Enable/disable reranking | | `rerank_model_func` | callable | None | Custom rerank function containing all configurations (model, API keys, top_k, etc.) | ## Example Usage ### Basic Usage ```python import asyncio from lightrag import LightRAG, QueryParam from lightrag.llm.openai import gpt_4o_mini_complete, openai_embedding from lightrag.kg.shared_storage import initialize_pipeline_status from lightrag.rerank import jina_rerank async def my_rerank_func(query: str, documents: list, top_k: int = None, **kwargs): """Custom rerank function with all settings included""" return await jina_rerank( query=query, documents=documents, model="BAAI/bge-reranker-v2-m3", api_key="your_jina_api_key_here", top_k=top_k or 10, # Default top_k if not provided **kwargs ) async def main(): # Initialize with rerank enabled rag = LightRAG( working_dir="./rag_storage", llm_model_func=gpt_4o_mini_complete, embedding_func=openai_embedding, rerank_model_func=my_rerank_func, ) await rag.initialize_storages() await initialize_pipeline_status() # Insert documents await rag.ainsert([ "Document 1 content...", "Document 2 content...", ]) # Query with rerank (automatically applied) result = await rag.aquery( "Your question here", param=QueryParam(enable_rerank=True) # This top_k is passed to rerank function ) print(result) asyncio.run(main()) ``` ### Direct Rerank Usage ```python from lightrag.rerank import custom_rerank async def test_rerank(): documents = [ {"content": "Text about topic A"}, {"content": "Text about topic B"}, {"content": "Text about topic C"}, ] reranked = await custom_rerank( query="Tell me about topic A", documents=documents, model="BAAI/bge-reranker-v2-m3", base_url="https://api.your-provider.com/v1/rerank", api_key="your_api_key_here", top_k=2 ) for doc in reranked: print(f"Score: {doc.get('rerank_score')}, Content: {doc.get('content')}") ``` ## Best Practices 1. **Self-Contained Functions**: Include all necessary configurations (API keys, models, top_k handling) within your rerank function 2. **Performance**: Use reranking selectively for better performance vs. quality tradeoff 3. **API Limits**: Monitor API usage and implement rate limiting within your rerank function 4. **Fallback**: Always handle rerank failures gracefully (returns original results) 5. **Top-k Handling**: Handle top_k parameter appropriately within your rerank function 6. **Cost Management**: Consider rerank API costs in your budget planning ## Troubleshooting ### Common Issues 1. **API Key Missing**: Ensure API keys are properly configured within your rerank function 2. **Network Issues**: Check API endpoints and network connectivity 3. **Model Errors**: Verify the rerank model name is supported by your API 4. **Document Format**: Ensure documents have `content` or `text` fields ### Debug Mode Enable debug logging to see rerank operations: ```python import logging logging.getLogger("lightrag.rerank").setLevel(logging.DEBUG) ``` ### Error Handling The rerank integration includes automatic fallback: ```python # If rerank fails, original documents are returned # No exceptions are raised to the user # Errors are logged for debugging ``` ## API Compatibility The generic rerank API expects this response format: ```json { "results": [ { "index": 0, "relevance_score": 0.95 }, { "index": 2, "relevance_score": 0.87 } ] } ``` This is compatible with: - Jina AI Rerank API - Cohere Rerank API - Custom APIs following the same format